
EXERCISE SOLUTIONS, LECTURES 15-20

Contents

15. Directional derivatives and the gradient 1
16. Local maxima and minima, critical points 5
17. Global maxima and minima I 12
18. Global maxima and minima II 15
19. Global maxima and minima III 24
20. Global minima of coercive functions 54

15. Directional derivatives and the gradient

Exercise 1. Find the gradient of f .
(1) f(x, y) = 3x2y − xy3
(2) f(x, y) = x

x+y

(3) f(x, y) =
√
x2 + y2

(4) f(x, y) = x ln(x) + y ln(y)
(5) f(x, y) = ex sin(y)

(6) f(x, y, z) = x
y+z

(7) f(x, y, z) = x ln(yz)
(8) f(x, y, z) = xyzexyz

Solution. (1)
∇f(x, y) = 〈6xy − y3, 3x2 − 3xy2〉

(2) We write this as f(x, y) = x(x+ y)−1. Then

fx(x, y) = (x+ y)−1+x
∂

∂x

(
(x+ y)−1

)
=

1

x+ y
−x(x+ y)−2 = 1

x+ y
− x

(x+ y)2
=

y

(x+ y)2

fy(x, y) = −x(x+ y)−2 = − x

(x+ y)2

So
∇f(x, y) = 〈 y

(x+ y)2
,− x

(x+ y)2
〉

(3) We write this as f(x, y) = (x2 + y2)1/2. Then

fx(x, y) =
1

2
(x2 + y2)−1/2 · (2x) = x√

x2 + y2

fy(x, y) =
1

2
(x2 + y2)−1/2 · (2y) = y√

x2 + y2
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So
∇f(x, y) = 〈 x√

x2 + y2
,

y√
x2 + y2

〉

(4) We have

fx(x, y) = ln(x) + x · 1
x
= ln(x) + 1

fy(x, y) = ln(y) + y · 1
y
= ln(y) + 1

So
∇f(x, y) = 〈ln(x) + 1, ln(y) + 1〉

(5) We have by Chain Rule

fx(x, y) = ex sin(y) sin(y), fy(x, y) = ex sin(y)x cos(y),

so
∇f(x, y) = 〈ex sin(y) sin(y), ex sin(y)x cos(y)〉

(6) We write this as f(x, y, z) = x(y + z)−1. We have

fx(x, y, z) = (y + z)−1 =
1

y + z

fy(x, y, z) = −x(y + z)−2 = − x

(y + z)2

fz(x, y, z) = −x(y + z)−2 = − x

(y + z)2

So
∇f(x, y, z) = 〈 1

y + z
,− x

(y + z)2
,− x

(y + z)2
〉

(7) We have

fx(x, y, z) = ln(yz), fy(x, y, z) = x
1

yz
· z = x

y
, fz(x, y, z) = x

yz

·
y =

x

z

(8) We have

fx(x, y, z) = yzexyz + xyzexyz · (yz) = (yz + xy2z2)exyz

fy(x, y, z) = xzexyz + xyzexyz · (xz) = (xz + x2yz2)exyz

fz(x, y, z) = xyexyz + xyzexyz · (xy) = (xy + x2y2z)exyz

So

∇f(x, y, z) = 〈(yz + xy2z2)exyz, (xz + x2yz2)exyz, (xy + x2y2z)exyz〉

�

Exercise 2. Find the directional derivative.
(1) D~uf(1, 1), where f(x, y) = x2 + y2 and ~u = 〈 1√

2
,− 1√

2
〉

(2) D~uf(3, 0), where f(x, y) = x2ey and ~u = 〈3
5
,−4

5
〉.
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Solution. (1) Note D~uf(1, 1) = ~u · ∇f(1, 1). We have

fx(x, y) = 2x, fy(x, y) = 2y,

so
∇f(1, 1) = 〈2, 2〉

so

D~uf(1, 1) = 〈
1√
2
,− 1√

2
〉 · 〈2, 2〉 = 2√

2
− 2√

2
= 0

(2) Note that D~uf(3, 0) = ~u · ∇f(3, 0). We have

fx(x, y) = 2xey, fy(x, y) = x2ey,

so
∇f(3, 0) = 〈6, 9〉

so

D~uf(3, 0) = 〈
3

5
,−4

5
〉 · 〈6, 9〉 = 18

5
− 36

5
= −18

5
�

Exercise 3. Find the maximum rate of increase of f at the given point, and the direction in which
it occurs.

(1) f(x, y) = sin(xy) at (1, 0).
(2) f(x, y) = 2xy2 + xy3 at (1, 2).
(3) f(x, y, z) = xyz2 + x2y2 at (1, 0,−1)

Solution. (1) The direction of maximum rate of increase is the unit vector in the direction of
gradient,∇f(1, 0). Note

fx(x, y) = y cos(xy), fy(x, y) = x cos(xy),

so
∇f(1, 0) = 〈0, 1〉

Since this is already a unit vector, the direction of maximum rate of increase is 〈0, 1〉. The
maximum rate of increase is |∇f(1, 0)| = 1.

(2) The direction of maximum rate of increase is the unit vector in the direction of gradient,
∇f(1, 2). Note

fx(x, y) = 2y2 + y3, fy(x, y) = 4xy + 3xy2

so
∇f(1, 2) = 〈2 · 22 + 23, 4 · 2 + 3 · 22〉 = 〈16, 20〉

Thus the direction of maximum rate of increase is
∇f(1, 2)
|∇f(1, 2)|

=
〈16, 20〉√
162 + 202

=
〈16, 20〉√

656
=
〈4, 5〉√

41
= 〈 4√

41
,

5√
41
〉

The maximum rate of increase is |∇f(1, 2)| = 4
√
41.
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(3) The direction of maximum rate of increase is the unit vector in the direction of gradient,
∇f(1, 0,−1). Note

fx(x, y, z) = yz2 + 2xy2, fy(x, y, z) = xz2 + 2x2y, fz(x, y, z) = 2xyz

so
∇f(1, 0,−1) = 〈0, 1, 0〉

This is already a unit vector, so 〈0, 1, 0〉 is the direction of the maximum rate of increase.
The maximum rate of increase is |∇f(1, 0,−1)| = 1.

�

Exercise 4. Find the tangent plane.
(1) Tangent plane to xyz = 6 at (1, 2, 3)
(2) Tangent plane to x+ y + z = exyz at (0, 0, 1)
(3) Tangent plane to x4 + y4 + z4 = 3x2y2z2 at (1, 1, 1)

Solution. (1) The surface is the level surface f(x, y, z) = 6 where f(x, y, z) = xyz. The
equation of the tangent plane is

fx(1, 2, 3)(x− 1) + fy(1, 2, 3)(y − 2) + fz(1, 2, 3)(z − 3) = 0

Note that
fx(x, y, z) = yz, fy(x, y, z) = xz, fz(x, y, z) = xy

so
fx(1, 2, 3) = 6, fy(1, 2, 3) = 3, fz(1, 2, 3) = 2

so the tangent plane has equation
6(x− 1) + 3(y − 2) + 2(z − 3) = 0,

or
6x+ 3y + 2z = 18

(2) The surface is the level surface f(x, y, z) = 0 where f(x, y, z) = x + y + z − exyz . The
equation of the tangent plane is

fx(0, 0, 1)(x− 0) + fy(0, 0, 1)(y − 0) + fz(0, 0, 1)(z − 1) = 0

Note that
fx(x, y, z) = 1− yzexyz, fy(x, y, z) = 1− xzexyz, fz(x, y, z) = 1− xyexyz

so
fx(0, 0, 1) = 1, fy(0, 0, 1) = 1, fz(0, 0, 1) = 1

so the tangent plane has equation
x+ y + z − 1 = 0

(3) The surface is the level surface f(x, y, z) = 0 where f(x, y, z) = x4 + y4 + z4 − 3x2y2z2.
The equation of the tangent plane is

fx(1, 1, 1)(x− 1) + fy(1, 1, 1)(y − 1) + fz(1, 1, 1)(z − 1) = 0

Note that
fx(x, y, z) = 4x3 − 6xy2z2, fy(x, y, z) = 4y3 − 6x2yz2, fz(x, y, z) = 4z3 − 6x2y2z
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so
fx(1, 1, 1) = −2, fy(1, 1, 1) = −2, fz(1, 1, 1) = −2

so the tangent plane has equation

−2(x− 1)− 2(y − 1)− 2(z − 1) = 0,

or
−2x− 2y − 2z = −6

�

Exercise 5. Shown is a topographic map of Blue River Pine Provincial Park in British Columbia.
Draw curves of steepest descent from point A (descending to Mud Lake) and from point B.

Solution. You follow the negative gradient vectors. The picture is just an approximation, so there
might be certain inaccurancies in the drawing.

�

16. Local maxima and minima, critical points

Exercise 1. Find the critical points and use the Second Derivative Test to determine whether
they are local minima, local maxima or saddle points.
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(1) f(x, y) = xy − 2x− 2y − x2 − y2
(2) f(x, y) = y(ex − 1)
(3) f(x, y) = 2− x4 + 2x2 − y2
(4) f(x, y) = (6x− x2)(4y − y2)
(5) f(x, y) = (x2 + y2)e−x

(6) f(x, y) = sin x sin y, in −π < x < π and −π < y < π
(7) f(x, y) = y2 − 2y cosx, in −1 ≤ x ≤ 7 and −3 ≤ y ≤ 3
(8) f(x, y) = −(x2 − 1)2 − (x2y − x− 1)2

(9) f(x, y) = 3xey − x3 − e3y

Solution. (1) We �rst �nd the critical points. Note

fx(x, y) = y − 2− 2x, fy(x, y) = x− 2− 2y

So if (x, y) is a critical point, this means

y − 2− 2x = 0, x− 2− 2y,

or
y = 2 + 2x, x = 2 + 2y.

Plugging x = 2 + 2y into y = 2 + 2x, we get

y = 2 + 2(2 + 2y) = 6 + 4y,

or 6 = −3y, or y = −2. From this, we get x = 2 − 4 = −2. So there is only one critical
point, (−2,−2).

To use the Second Derivative Test, we need to compute what D(x, y) is. Note that

fxx(x, y) = −2, fxy(x, y) = 1, fyy(x, y) = −2,

so
D(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y)2 = 4− 1 = 3.

This is always positive. Note also that fxx is always −2 < 0, so any critical point has to
be local maximum.

(2) We �rst �nd the critical points. Note

fx(x, y) = yex, fy(x, y) = ex − 1

so if (x, y) is a critical point, this means

yex = 0, ex − 1 = 0.

Since yex = 0 means y = 0 or ex = 0, and since ex is never zero, this means y = 0. The
second equation means ex = 1, or x = ln(1) = 0. Thus there is one critical point, (0, 0).

To use the Second Derivative Test, we need to compute what D(x, y) is. Note that

fxx(x, y) = yex, fxy(x, y) = ex, fyy(x, y) = 0,

so
D(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y)2 = −e2x.

This is always negative, so any critical point is a saddle point.
6



(3) We �rst �nd the critical points. Note that

fx(x, y) = −4x3 + 4x, fy(x, y) = −2y.

So if (x, y) is a critical point, this means

−4x3 + 4x = 0, −2y = 0.

So �rst of all y = 0, and we have −4x(x− 1)(x+1) = 0. Thus x could be either 0,−1 or
1. The critical points are (0, 0), (−1, 0) and (1, 0).

To use the Second Derivative Test, we need to compute what D(x, y) is. Note that

fxx(x, y) = −12x2 + 4, fxy(x, y) = 0, fyy(x, y) = −2,

so
D(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y)2 = 24x2 − 8

Thus
D(0, 0) = −8 < 0

which means that (0, 0) is a saddle point. Also,

D(−1, 0) = 24− 8 > 0, fxx(−1, 0) = −12 + 4 < 0,

which means that (−1, 0) is a local maximum.

D(1, 0) = 24− 8 > 0, fxx(1, 0) = −12 + 4 < 0,

which means that (1, 0) is a local maximum.
(4) We �rst �nd the critical points. Note that

fx(x, y) = (6− 2x)(4y − y2), fy(x, y) = (6x− x2)(4− 2y),

so if (x, y) is a critical point, it means

(6− 2x)(4y − y2) = 0, (6x− x2)(4− 2y) = 0.

The �rst equation means that either 6− 2x = 0 or 4y− y2 = 0. Note also that 6− 2x = 0
means x = 3, and 4y − y2 = 0 means either y = 0 or y = 4. So the �rst requirement is
either x = 3, y = 0 or y = 4.

The second equation means that either 6x − x2 = 0 or 4 − 2y = 0. Note also that
6x − x2 = 0 means either x = 0 or x = 6, and 4 − 2y = 0 means y = 2. So the second
requirement is either x = 0, x = 6 or y = 2.

So a pair (x, y) satisfying the two requirements are as follows, following the �rst re-
quirement �rst:
• If x = 3, then out of the three possible outcomes of the second requirement, x = 0,
x = 6 or y = 2, the only possibility is y = 2, so (3, 2).
• If y = 0, then out of the three possible outcomes of the second requirement, x = 0,
x = 6 or y = 2, it could possibly be either x = 0 or x = 6, so (0, 0) or (6, 0).
• If y = 4, then out of the three possible outcomes of the second requirement, x = 0,
x = 6 or y = 2, it could possibly be either x = 0 or x = 6, so (0, 4) or (6, 4).

So the critical points are (3, 2), (0, 0), (6, 0), (0, 4) and (6, 4).
To use the Second Derivative Test, we need to compute what D(x, y) is. Note that

fxx(x, y) = −2(4y − y2), fxy(x, y) = (6− 2x)(4− 2y), fyy(x, y) = −2(6x− x2)
7



so

D(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y) = 4(4y − y2)(6x− x2)− (6− 2x)2(4− 2y)2

We apply the Second Derivative Test to the �ve critical points.
• If (x, y) = (3, 2), then

D(3, 2) = 4(8− 4)(18− 9)− 0 > 0, fxx(x, y) = −2(8− 4) < 0,

so (3, 2) is a local maximum.
• If (x, y) = (0, 0), then

D(0, 0) = 0− 6242 < 0,

so (0, 0) is a saddle point.
• If (x, y) = (6, 0), then

D(6, 0) = 0− (6− 12)242 < 0,

so (6, 0) is a saddle point.
• If (x, y) = (0, 4), then

D(0, 4) = 0− 62(4− 8)2 < 0,

so (0, 4) is a saddle point.
• If (x, y) = (6, 4), then

D(6, 4) = 0− (6− 12)2(4− 8)2 < 0,

so (6, 4) is a saddle point.
(5) We �rst �nd the critical points. Note that

fx(x, y) = 2xe−x − (x2 + y2)e−x = (2x− x2 − y2)e−x, fy(x, y) = 2ye−x,

so if (x, y) is a critical point, it means that

(2x− x2 − y2)e−x = 0, 2ye−x = 0.

Since e−x is never zero, this means

2x− x2 − y2 = 0, 2y = 0.

So y = 0, and 2x− x2 = 0, which means either x = 0 or x = 2. So the critcial points are
(0, 0) and (2, 0).

To use the Second Derivative Test, we need to compute what D(x, y) is. Note that

fxx(x, y) = (2− 2x)e−x − (2x− x2 − y2)e−x = (2− 4x+ x2 + y2)e−x,

fxy(x, y) = −2ye−x,
fyy(x, y) = 2e−x.

So

D(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y)2 = (4− 8x+ 2x2 + 2y2)e−2x − 4y2e−2x

• For the critical point (0, 0), we have

D(0, 0) = 4 > 0, fxx(0, 0) = 2 > 0,

so (0, 0) is a local minimum.
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• For the critical point (2, 0), we have
D(2, 0) = (4− 16 + 8)e−4 < 0,

so (2, 0) is a saddle point.
(6) We �rst �nd the critical points. Note that

fx(x, y) = cos x sin y, fy(x, y) = sinx cos y,

so if (x, y) is a critical point, it means
cosx sin y = 0, sinx cos y = 0.

So the �rst requirement is either cosx = 0 or sin y = 0, and the second requirement is
either sinx = 0 or cos y = 0.
• If cosx = 0, then sinx 6= 0, so cos y = 0.
• If sin y = 0, then cos y 6= 0, so sinx = 0.

So (x, y) is a critical point if either cosx = cos y = 0 or sinx = sin y = 0.
• If cosx = cos y = 0, then it means x, y are either π

2
or −π

2
. So the critical points

coming out of this possibility are (−π
2
,−π

2
), (−π

2
, π
2
), (π

2
,−π

2
), (π

2
, π
2
).

• If sinx = sin y = 0, then it means x, y are both 0, so the critical point coming out of
this possibility is (0, 0).

So the critcial points in the domain are (−π
2
,−π

2
), (−π

2
, π
2
), (π

2
,−π

2
), (π

2
, π
2
) and (0, 0).

To use the Second Derivative Test, we need to compute what D(x, y) is. Note that
fxx(x, y) = − sinx sin y, fxy(x, y) = cos x cos y, fyy(x, y) = − sinx sin y,

so
D(x, y) = sin2 x sin2 y − cos2 x cos2 y.

• For the critical point (−π
2
,−π

2
), we have

D(−π
2
,−π

2
) = 1 > 0, fxx(−

π

2
,−π

2
) = −1 < 0,

so (−π
2
,−π

2
) is a local maximum.

• For the critical point (−π
2
, π
2
), we have

D(−π
2
,
π

2
) = 1 > 0, fxx(−

π

2
,
π

2
) = 1 > 0,

so (−π
2
, π
2
) is a local minimum,

• For the critical point (π
2
,−π

2
), we have

D(
π

2
,−π

2
) = 1 > 0, fxx(

π

2
,−π

2
) = 1 > 0,

so (π
2
,−π

2
) is a local minimum.

• For the critical point (π
2
,−π

2
), we have

D(
π

2
,−π

2
) = 1 > 0, fxx(

π

2
,−π

2
) = −1 < 0,

so (π
2
,−π

2
) is a local maximum.

• For the critical point (0, 0), we have
D(0, 0) = −1 < 0,

so (0, 0) is a saddle point.
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(7) We �rst �nd the critical points. Note that

fx(x, y) = 2y sinx, fy(x, y) = 2y − 2 cosx,

so if (x, y) is a critical point, we have

2y sinx = 0, 2y − 2 cosx = 0.

So y = cos x, and either y = 0 or sinx = 0. If y = 0, then cosx = 0, which means that
x = · · · ,−π

2
, π
2
, 3π

2
, 5π

2
, · · · . Since −π

2
∼ −1.57, 3π

2
∼ 4.71, 5π

2
∼ 7.85, the points in the

range −1 ≤ x ≤ 7 are x = π
2

and 3π
2

. If sinx = 0, then cosx could be either 1 or −1, so
y = 1 or −1. Note also that sinx = 0 in the range −1 ≤ x ≤ 7 means x = 0, π or 2π,
because 3π ∼ 9.42 > 7 and −π ∼ −3.14 < −1. So the critical points are (π

2
, 0), (3π

2
, 0),

(0, 1), (0,−1), (π, 1), (π,−1), (2π, 1), (2π,−1).
To use the Second Derivative Test, we need to compute what D(x, y) is. Note that

fxx(x, y) = 2y cosx, fxy(x, y) = 2 sinx, fyy(x, y) = 2

So
D(x, y) = 4y cosx− 4 sin2 x.

• For the critical point (π
2
, 0), we have

D(
π

2
, 0) = −4 < 0,

so (π
2
, 0) is a saddle point.

• For the critical point (3π
2
, 0),

D(
3π

2
, 0) = −4 < 0,

so (3π
2
, 0) is a saddle point.

• For the critical point (0, 1), we have

D(0, 1) = 4 > 0, fxx(0, 1) = 2 > 0,

so (0, 1) is a local minimum.
• For the critical point (0,−1), we have

D(0,−1) = −4 < 0,

so (0,−1) is a saddle point.
• For the critical point (π, 1),

D(π, 1) = −4 < 0,

so (π, 1) is a saddle point.
• For the critical point (π,−1),

D(π,−1) = 4 > 0, fxx(π,−1) = 2 > 0,

so (π,−1) is a local minimum.
• For the critical point (2π, 1),

D(2π, 1) = 4 > 0, fxx(2π, 1) = 2 > 0,

so (2π, 1) is a local minimum.
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• For the critical point (2π,−1),
D(2π,−1) = −4 < 0,

so (2π,−1) is a saddle point.
(8) We �rst �nd the critical points. Note that

fx(x, y) = −2(x2−1) ·(2x)−2(x2y−x−1) ·(2xy−1) = −4x(x2−1)−2(2xy−1)(x2y−x−1),

fy(x, y) = −2(x2y − x− 1) · (x2) = −2x2(x2y − x− 1).

So if (x, y) is a critical point, this means

−4x(x2 − 1)− 2(2xy − 1)(x2y − x− 1) = 0, −2x2(x2y − x− 1) = 0.

The second requirement means either x = 0 or x2y − x− 1 = 0.
• If x = 0, then the �rst requirement becomes

−2(−1)(−1) = 0,

which is absurd.
• If x2y − x− 1 = 0, then the �rst requirement becomes

−4x(x2 − 1) = 0,

so either x = 0, x = 1 or x = −1.
– If x = 0, then x2y − x− 1 = 0 becomes −1 = 0, which is absurd.
– If x = 1, then x2y − x − 1 = 0 becomes y − 2 = 0, or y = 2. So (1, 2) is a

critical point.
– If x = −1, then x2y − x− 1 = 0 becomes y = 0, so (−1, 0) is a critical point.

So the critical points are (1, 2) and (−1, 0).
To use the Second Derivative Test, we need to compute what D(x, y) is. Note that

fxx(x, y) = −4(x2 − 1)− 4x · (2x)− 2(2y)(x2y − x− 1)− 2(2xy − 1)(2xy − 1)

= −4(x2 − 1)− 8x2 − 4y(x2y − x− 1)− 2(2xy − 1)2

fxy(x, y) = −2(2x)(x2y − x− 1)− 2(2xy − 1)x2

fyy(x, y) = −2x4.
Note that for both (x, y) = (1, 2) and (−1, 0), we had x2y− x− 1 = 0 and x2 = 1. Using
this, we have

fxx(1, 2) = −8− 2(4− 1)2 = −8− 18 = −26,

fxy(1, 2) = −2(4− 1) = −6,
fyy(1, 2) = −2,

so D(1, 2) = 52 − 36 > 0, and fxx(1, 2) < 0, so (1, 2) is a local maximum. For (−1, 0),
we have

fxx(−1, 0) = −8− 2(−1)2 = −10,
fxy(−1, 0) = −2(−1) = 2,

fyy(−1, 0) = −2,
so D(−1, 0) = 20− 4 > 0, and fxx(−1, 0) < 0, so (−1, 0) is a local maximum.

11



(9) We �rst �nd the critical points. Note that
fx(x, y) = 3ey − 3x2, fy(x, y) = 3xey − 3e3y,

so if (x, y) is a critical point, it means
3ey − 3x2 = 0, 3xey − 3e3y = 0.

The second requirement says 3xey = 3e3y, or x = e2y. The �rst requirement says 3ey =
3x2, or ey = x2. Thus,

x = e2y = (ey)2 = (x2)2 = x4.

This means either x = 0 or x3 = 1, or x = 1. If x = 0, then e2y = 0, which is absurd. If
x = 1, then e2y = 1, so y = 0. Thus there is only one critical point, (1, 0).

To use the Second Derivative Test, we need to compute what D(x, y) is. Note that
fxx(x, y) = −6x, fxy(x, y) = 3ey, fyy(x, y) = 3xey − 9e3y.

So
fxx(1, 0) = −6, fxy(1, 0) = 3, fyy(1, 0) = −6.

So
D(1, 0) = 36− 9 > 0, fxx(1, 0) = −6 < 0,

so (1, 0) is a local maximum.
�

17. Global maxima and minima I

Exercise 1. Find the global maximum and minimum values of f on the given domain.
(1) f(x, y) = x2 − y2, on the domain x2 + y2 = 1
(2) f(x, y) = xey, on the domain x2 + y2 = 2

(3) f(x, y) = xye−x
2−y2 , on the domain x2 + y2 = 1

Solution.
(1) The domain equation is g(x, y) = 1 where g(x, y) = x2 + y2. So the global max/min

can occur at the Lagrange critical points, namely when ∇f(x, y) and ∇g(x, y) are par-
allel. Since ∇f(x, y) = 〈2x,−2y〉 and ∇g(x, y) = 〈2x, 2y〉, this happens either when
∇g(x, y) = 〈0, 0〉, which is when x = y = 0, which contradicts x2 + y2 = 1, or there is λ
such that 〈2x,−2y〉 = λ〈2x, 2y〉. Since 2x = 2λx, either λ = 1 or x = 0.
• If λ = 1, then −2y = 2y, so y = 0. Then x2 = 1, so f(x, y) = 1.
• If x = 0, then y2 = 1, so f(x, y) = −1.

So the global max is 1 and the global min is −1.
(2) The domain equation is g(x, y) = 2 where g(x, y) = x2 + y2. So the global max/min

can occur at the Lagrange critical points, namely when ∇f(x, y) and ∇g(x, y) are par-
allel. Since ∇f(x, y) = 〈ey, xey〉 and ∇g(x, y) = 〈2x, 2y〉, This happens either when
∇g(x, y) = 〈0, 0〉, which is when x = y = 0, which contradicts x2 + y2 = 2, or there is λ
such that 〈ey, xey〉 = λ〈2x, 2y〉. So 2λx2 = 2λy, so either λ = 0 or x2 = y.
• If λ = 0, then ey = 0, which is a contradiction.
• If x2 = y, then x2 + y2 = 2 becomes x4 + x2 − 2 = 0. This factorizes into (x2 −
1)(x2 + 2) = 0. So either x2 = 1 or x2 = −2. Since x2 is positive, x2 = 1, so either
x = 1 or x = −1. Thus y = 1.

12



So the Lagrange critical points are (1, 1) and (−1, 1). Since f(1, 1) = e and f(−1, 1) =
−e, the global max is e and the global min is −e.

(3) The domain equation is g(x, y) = 1 where g(x, y) = x2 + y2. So the global max/min can
occur at the Lagrange critical points, namely when ∇f(x, y) and ∇g(x, y) are parallel.
Since ∇f(x, y) = 〈ye−x2−y2 − 2x2ye−x

2−y2 , xe−x
2−y2 − 2xy2e−x

2−y2〉 and ∇g(x, y) =
〈2x, 2y〉, they can be parallel if there is λ such that

(1− 2x2)ye−x
2−y2 = 2λx, (1− 2y2)xe−x

2−y2 = 2λy.

So
(1− 2x2)y2e−x

2−y2 = 2λxy = (1− 2y2)x2e−x
2−y2

so
(1− 2x2)y2 = (1− 2y2)x2

Expanding out we get
y2 − 2x2y2 = x2 − 2x2y2

or y2 = x2. So either x = y or x = −y. Using x2 + y2 = 1, we get 2x2 = 1, or x = 1√
2

or − 1√
2
. The function x2 + y2 is set to be 1, and xy is maximized when x = y which is

1/2 and minimized when x = −y which is −1/2. So the global maximum is e−1

2
and the

global minimum is − e−1

2
.

�

Exercise 2. Find the global maximum and minimum values of f on the given domain.
(1) f(x, y) = x2 + y2 + 4x− 4y, on x2 + y2 ≤ 9
(2) f(x, y) = sin(x+ y), on x2 + xy + y2 ≤ 3

Solution. Keep in mind that, in this case, we need to look for
• critical points on the domain, and
• Lagrange critical points on the boundary of the domain.

(1) • Critical points on the domain.
Note that

∇f(x, y) = 〈2x+ 4, 2y − 4〉
so ∇f(x, y) = 〈0, 0〉 means 2x+ 4 = 0 and 2y − 4 = 0, or x = −2 and y = 2. Since
(−2, 2) does belong to the domain x2 + y2 ≤ 9, (−2, 2) is a critical point.
• Lagrange critical points on the boundary of the domain.

On the boundary we have a domain equation g(x, y) = 9, where g(x, y) = x2 + y2.
By the method of Lagrange multipliers, we would like to �nd a point (x, y) where
∇f(x, y) = 〈2x+4, 2y−4 is parallel to∇g(x, y) = 〈2x, 2y〉. This can happen either
when ∇g(x, y) = 〈0, 0〉 or there is λ such that∇f(x, y) = λ∇g(x, y).

– If ∇g(x, y) = 〈0, 0〉, this means x = y = 0, which does not satisfy the domain
equation x2 + y2 = 9.

– Suppose there is λ such that 〈2x+ 4, 2y − 4〉 = λ〈2x, 2y〉. Then
2x+ 4 = 2λx, 2y − 4 = 2λy

or
2 = (λ− 1)x, −2 = (λ− 1)y

so (λ− 1)x = −(λ− 1)y. Thus, either λ = 1 or x = −y.
13



∗ If λ = 1, then 2 = (λ− 1)x implies 2 = 0, so this doesn’t make sense.
∗ If x = −y, then x2 + y2 = 9 implies that 2x2 = 9, or x = 3√

2
or− 3√

2
. Thus

the Lagrange critical points are ( 3√
2
,− 3√

2
) and (− 3√

2
, 3√

2
).

Thus the Lagrange critical points are ( 3√
2
,− 3√

2
) and (− 3√

2
, 3√

2
).

The job is to compare the values of f(x, y) on the points we’ve found.
• Critical points on the domain.

– f(−2, 2) = −8.
• Lagrange critical points on the boundary of the domain.

– f( 3√
2
,− 3√

2
) = 9 + 12√

2
+ 12√

2
= 9 + 12

√
2.

– f(− 3√
2
, 3√

2
) = 9− 12√

2
− 12√

2
= 9− 12

√
2.

Among these values, the largest value 9 + 12
√
2 is the global maximum value, and the

smallest value −8 is the global minimum value.
(2) • Critical points on the domain.

We have

∇f(x, y) = 〈cos(x+ y), cos(x+ y)〉

so the critical points happen when cos(x + y) = 0. This happens when x + y is an
odd integer times π

2
(such as π

2
, 3π

2
, −π

2
). Thus critical points are (x, y) when x+ y is

an odd integer times π
2
.

• Lagrange critical points on the boundary of the domain.
On the boundary we have a domain equation g(x, y) = 3where g(x, y) = x2+xy+y2.
Lagrange critical points are when ∇f(x, y) = 〈cos(x + y), cos(x + y)〉 is parallel to
∇g(x, y) = 〈2x+ y, x+2y〉. This happens when either∇g(x, y) is zero or there is a
number λ such that∇f(x, y) = λ∇g(x, y).

– If ∇g(x, y) = 〈0, 0〉, this means 2x + y = 0 and x + 2y = 0. Subtracting the
second equation from the �rst equation, we get x− y = 0, or x = y. Plugging
this back into 2x+ y = 0, we get 3x = 0, or x = 0. So x = y = 0. This con�icts
with the domain equation x2 + xy + y2 = 3.

– If there is a number λ such that 〈cos(x + y), cos(x + y)〉 = λ〈2x + y, x + 2y〉,
this means λ(2x+ y) = λ(x+ 2y), or λ(x− y) = 0. So either λ = 0 or x = y.
∗ If λ = 0, then cos(x+y) = 0, so∇f(x, y) = 〈0, 0〉, so this case is subsumed

by the critical points on the domain.
∗ If x = y, then the domain equation x2 + xy + y2 = 3 becomes 3x2 = 3, or
x2 = 1, so x = 1 or x = −1.

Thus the Lagrange critical points are (1, 1), (−1,−1) and possibly some critical points
(namely, x+ y is an odd integer times π

2
).

The job is to compare the values of f(x, y) on the points we’ve found.
• Critical points on the domain.

– When x+ y is an odd integer times π
2
, sin(x+ y) = 1 or −1.

• Lagrange critical points on the boundary of the domain.
– f(1, 1) = sin(2).
– f(−1,−1) = − sin(2).
– Additionally, there might be some points with x + y equal to an odd integer

times π
2
, but these values were already considered above.
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Among these values, the largest value 1 is the global maximum value, and the smallest
value −1 is the global minimum value.

�

18. Global maxima and minima II

Exercise 1. Find the global maximum and minimum values of f on the given domain.
(1) f(x, y, z) = xy2z, on the domain {x2 + y2 + z2 = 4}
(2) f(x, y, z) = x2 + y2 + z2, on the domain {x2 + y2 + z2 + xy = 12}
(3) f(x, y, z) = x4 + y4 + z4, on the domain {x2 + y2 + z2 = 1}

Solution. The problems in this Exercise are in the case of 3 variables and 1 equality. In this case,
we know there is no boundary (the domain has no inequalities in its expression), and we only
look for Lagrange critical points of the given domain.

(1) The domain is g(x, y, z) = 4 where g(x, y, z) = x2 + y2 + z2.
∇f(x, y, z) = 〈y2z, 2xyz, xy2〉, ∇g(x, y, z) = 〈2x, 2y, 2z〉

In order for them to be parallel, either ∇g is zero or there is λ such that ∇f(x, y, z) =
λ∇g(x, y, z).
• If∇g(x, y, z) = 〈0, 0, 0〉, then x = y = z = 0, which cannot happen as x2+y2+z2 =
4.
• If there is λ such that∇f(x, y, z) = λ∇g(x, y, z), then

y2z = 2λx, 2xyz = 2λy, xy2 = 2λz

So
xy2z = 2λx2, xy2z = λy2, xy2z = 2λz2

so
2λx2 = λy2 = 2λz2

so either λ = 0 or 2x2 = y2 = 2z2.
– If λ = 0, then the equations are y2z = 0, 2xyz = 0 and xy2 = 0. From y2z = 0,

we see that either y = 0 or z = 0.
∗ If y = 0, all three equations are satis�ed, and the only remaining condition

to check is x2 + z2 = 4.
∗ If z = 0, then the third equation xy2 = 0 implies that either x = 0 or y = 0.

As y = 0 case is already seen above, we can exclude it and say x = 0. Then
x = z = 0 with x2 + y2 + z2 = 4 implies that y2 = 4. Thus, y = 2 or
y = −2.

Thus, in this case, the Lagrange critical points we obtain are either of the form
(x, 0, z) with x2 + z2 = 4, or (0, 2, 0), or (0,−2, 0).

– If 2x2 = y2 = 2z2, we use this with x2 + y2 = z2 = 4 to get
x2 + 2x2 + x2 = 4,

or x2 = 1. Thus either x = 1 or x = −1. Similarly, as y2 = 2, and z2 = 1, so
either y =

√
2 or y = −

√
2, and either z = 1 or z = −1.

Thus, in this case, the Lagrange critical points we obtain are either (1,
√
2, 1),

(1,
√
2,−1), (1,−

√
2, 1), (1,−

√
2,−1), (−1,

√
2, 1), (−1,

√
2,−1), (−1,−

√
2, 1),

(−1,−
√
2,−1).
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The values of f(x, y, z) = xy2z at the points we found are:
• At (x, 0, z) with x2 + z2 = 4, f(x, 0, z) = 0
• f(0, 2, 0) = 0
• f(0,−2, 0) = 0
• f(1,

√
2, 1) = 2

• f(1,
√
2,−1) = −2

• f(1,−
√
2, 1) = 2

• f(1,−
√
2,−1) = −2

• f(−1,
√
2, 1) = −2

• f(−1,
√
2,−1) = 2

• f(−1,−
√
2, 1) = −2

• f(−1,−
√
2,−1) = 2

Combining all these, the global maximum value is 2 and the global minimum value is−2.
(2) The domain is g(x, y, z) = 12 where g(x, y, z) = x2 + y2 + z2 + xy.

∇f(x, y, z) = 〈2x, 2y, 2z〉, ∇g(x, y, z) = 〈2x+ y, 2y + x, 2z〉
For them to be parallel, either ∇g(x, y, z) is zero or there is λ such that ∇f(x, y, z) =
λ∇g(x, y, z).
• If∇g(x, y, z) = 〈0, 0, 0〉, then z = 0, and 2x+y = 0 and 2y+x = 0. This solves into
x−y = 0, so x = y, so x = y = 0. This in turn is impossible as x2+y2+z2+xy = 12.
• If there is λ such that∇f(x, y, z) = λ∇g(x, y, z), we have

2x = λ(2x+ y), 2y = λ(2y + x), 2z = 2λz

From the third equation, either λ = 1 or z = 0.
– If λ = 1, we have

2x = 2x+ y, 2y = 2y + x

so x = 0 and y = 0. The domain equation then becomes z2 = 12. Thus, either
z =
√
12 or z = −

√
12.

Thus, the Lagrange critical points we obtain in this case are (0, 0,
√
12) and

(0, 0,−
√
12).

– If z = 0, we have
2x = λ(2x+ y), 2y = λ(2y + x)

Adding these two, we get
2(x+ y) = 3λ(x+ y)

so either x+ y = 0 or 2 = 3λ.
∗ If x+ y = 0, or y = −x, we get 2x = λx, so either λ = 0 or x = 0.
· If λ = 0, then this means x = y = z = 0, which is not allowed.
· If x = 0, then y = 0, and we already had z = 0, so x = y = z = 0 which

is not allowed.
∗ If λ = 2

3
, then 2x = 2

3
(2x+ y) implies 6x = 4x+2y, or 2x = 2y, or x = y.

Putting this into the domain equation, we get 3x2 = 12, or x2 = 4. So
either x = 2 or x = −2. As x = y, the Lagrange critical points we obtain
in this case are (2, 2, 0) and (−2,−2, 0).
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The values of f(x, y, z) = x2 + y2 + z2 at the point we found are:
• f(0, 0,

√
12) = 12

• f(0, 0,−
√
12) = 12

• f(2, 2, 0) = 8
• f(−2,−2, 0) = 8

So the global maximum value is 12, and the global minimum value is 8.
(3) The domain equation is g(x, y, z) = 1 where g(x, y, z) = x2 + y2 + z2.

∇f(x, y, z) = 〈4x3, 4y3, 4z3〉, ∇g(x, y, z) = 〈2x, 2y, 2z〉

For them to be parallel, either ∇g(x, y, z) is zero or there is λ such that ∇f(x, y, z) =
λ∇g(x, y, z).
• If ∇g(x, y, z) = 〈0, 0, 0〉, x = y = z = 0, which is not allowed as x2 + y2 + z2 = 1.
• If there is λ such that∇f(x, y, z) = λ∇g(x, y, z), then

4x3 = 2λx, 4y3 = 2λy, 4z3 = 2λz

So from the �rst equation, either x = 0 or 2x2 = λ.
– If x = 0, the second equation says either y = 0 or 2y2 = λ.
∗ If y = 0, then x = y = 0, so z2 = 1. Thus, either z = 1 or z = −1.

Thus the Lagrange critical points we obtain in this case are (0, 0, 1) and
(0, 0,−1).
∗ If 2y2 = λ, the third equation says either z = 0 or 2z2 = λ.
· If z = 0, then x = z = 0, so y2 = 1. Thus, either y = 1 or y = −1.

Thus the Lagrange critical points we obtain in this case are (0, 1, 0) and
(0,−1, 0).
· If 2z2 = λ, then 2y2 = 2z2. As x = 0, x2 + y2 + z2 = 1 implies that
y2 = z2 = 1

2
. This implies that either y = 1√

2
or y = − 1√

2
, and either

z = 1√
2

or z = − 1√
2
.

Thus the Lagrange critical points we obtain in this case are (0, 1√
2
, 1√

2
),

(0, 1√
2
,− 1√

2
), (0,− 1√

2
, 1√

2
), (0,− 1√

2
,− 1√

2
).

– If 2x2 = λ, the second equation says either y = 0 or 2y2 = λ.
∗ If y = 0, then the third equation says either z = 0 or 2z2 = λ.
· If z = 0, then y = z = 0, so x2 = 1. Thus, either x = 1 or x = −1.

Thus the Lagrange critical points we obtain in this case are (1, 0, 0) and
(−1, 0, 0).
· If 2z2 = λ, then 2x2 = 2z2. From x2 + y2 + z2 = 1 and y = 0, we get
x2 = z2 = 1

2
. Thus, either x = 1√

2
or x = − 1√

2
, and either z = 1√

2
or

z = − 1√
2
.

Thus the Lagrange critical points we obtain in this case are ( 1√
2
, 0, 1√

2
),

( 1√
2
, 0,− 1√

2
), (− 1√

2
, 0, 1√

2
), (− 1√

2
, 0,− 1√

2
).

∗ If 2y2 = λ, the third equation says either z = 0 or 2z2 = λ.
· If z = 0, then 2x2 = 2y2. From x2 + y2 + z2 = 1 and z = 0, we get
x2 = y2 = 1

2
. Thus, either x = 1√

2
or x = − 1√

2
, and either y = 1√

2
or

y = − 1√
2
.
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Thus the Lagrange critical points we obtain in this case are ( 1√
2
, 1√

2
, 0),

( 1√
2
,− 1√

2
, 0), (− 1√

2
, 1√

2
, 0), (− 1√

2
,− 1√

2
, 0).

· If 2z2 = λ, then 2x2 = 2y2 = 2z2, so from x2 + y2 + z2 = 1, we obtain
x2 = y2 = z2 = 1

3
. Thus, either x = 1√

3
or x = − 1√

3
, either y = 1√

3
or

y = − 1√
3
, and either z = 1√

3
or z = − 1√

3
.

Thus the Lagrange critical points we obtain in this case are ( 1√
3
, 1√

3
, 1√

3
),

( 1√
3
, 1√

3
,− 1√

3
), ( 1√

3
,− 1√

3
, 1√

3
), ( 1√

3
,− 1√

3
,− 1√

3
), (− 1√

3
, 1√

3
, 1√

3
), (− 1√

3
, 1√

3
,− 1√

3
),

(− 1√
3
,− 1√

3
, 1√

3
), (− 1√

3
,− 1√

3
,− 1√

3
).

The values of f(x, y, z) = x4 + y4 + z4 at the points we found are:
• f(0, 0, 1) = 1
• f(0, 0,−1) = 1
• f(0, 1, 0) = 1
• f(0,−1, 0) = 1
• f(0, 1√

2
, 1√

2
) = 1

2

• f(0, 1√
2
,− 1√

2
) = 1

2

• f(0,− 1√
2
, 1√

2
) = 1

2

• f(0,− 1√
2
,− 1√

2
) = 1

2

• f(1, 0, 0) = 1
• f(−1, 0, 0) = 1
• f( 1√

2
, 0, 1√

2
) = 1

2

• f( 1√
2
, 0,− 1√

2
) = 1

2

• f(− 1√
2
, 0, 1√

2
) = 1

2

• f(− 1√
2
, 0,− 1√

2
) = 1

2

• f( 1√
2
, 1√

2
, 0) = 1

2

• f( 1√
2
,− 1√

2
, 0) = 1

2

• f(− 1√
2
, 1√

2
, 0) = 1

2

• f(− 1√
2
,− 1√

2
, 0) = 1

2

• f( 1√
3
, 1√

3
, 1√

3
) = 1

3

• f( 1√
3
, 1√

3
,− 1√

3
) = 1

3

• f( 1√
3
,− 1√

3
, 1√

3
) = 1

3

• f( 1√
3
,− 1√

3
,− 1√

3
) = 1

3

• f(− 1√
3
, 1√

3
, 1√

3
) = 1

3

• f(− 1√
3
, 1√

3
,− 1√

3
) = 1

3

• f(− 1√
3
,− 1√

3
, 1√

3
) = 1

3

• f(− 1√
3
,− 1√

3
,− 1√

3
) = 1

3

(Really you don’t have to write all down like this because we know f(x, y, z) does not
care about the sign of x, y, z, so you could for example express the last 8 rows compactly
as f(± 1√

3
,± 1√

3
,± 1√

3
) = 1

3
; I am just writing like this for completeness)

Thus, the global minimum value is 1
3
, and the global maximum value is 1.
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Exercise 2. Find the global maximum and minimum values of f on the given domain.
(1) f(x, y, z) = xyz, on the domain {x2 + y2 + z2 ≤ 1}
(2) f(x, y, z) = x2 + y2 + z2, on the domain {x4 + y4 + z4 ≤ 1}
(3) f(x, y, z) = x2 + y2 + z2, on the domain {x2 + y2 + z2 + xy − xz − yz ≤ 1}

Solution. The problems in this Exercise are in the case of 3 variables and 1 inequality. In this case,
we know we need to look for two types of points:

• critical points of the original domain,
• Lagrange critical points of the boundary domain.

(1) • Critical points of the original domain.
Note

∇f(x, y, z) = 〈yz, xz, xy〉,
so this is zero if yz = 0, xz = 0, and xy = 0. These three equations imply that at
least two of x, y, z are zero.
Thus, the Lagrange critical points we obtain in this case are (x, 0, 0) with x2 ≤ 1,
(0, y, 0) with y2 ≤ 1, and (0, 0, z) with z2 ≤ 1.
• Lagrange critical points of the boundary domain.

The boundary is expressed as g(x, y, z) = 1, where g(x, y, z) = x2+y2+z2. Lagrange
critical points happen when ∇f(x, y, z) = 〈yz, xz, xy〉 are parallel to ∇g(x, y, z) =
〈2x, 2y, 2z〉. This happens either when∇g(x, y, z) is zero or there is a number λ such
that ∇f(x, y, z) = λ∇g(x, y, z).

– If 〈2x, 2y, 2z〉 = 〈0, 0, 0〉, x = y = z = 0. This contradicts with the domain
equation x2 + y2 + z2 = 1.

– If there is a number λ such that∇f(x, y, z) = λ∇g(x, y, z), we have
yz = 2λx, xz = 2λy, xy = 2λz

So
xyz = 2λx2, xyz = 2λy2, xyz = 2λz2

so 2λx2 = 2λy2 = 2λz2. So either λ = 0 or x2 = y2 = z2.
∗ If λ = 0, then∇f(x, y, z) = 〈0, 0, 0〉, so this is already deal with as a critical

point of the original domain.
∗ If x2 = y2 = z2, then from x2 + y2 + z2 = 1, we have x2 = y2 = z2 = 1

3
.

Thus, each x, y, z is either 1√
3

or − 1√
3
.

Thus, the Lagrange critical points we obtain in this case are ( 1√
3
, 1√

3
, 1√

3
),

( 1√
3
, 1√

3
,− 1√

3
), ( 1√

3
,− 1√

3
, 1√

3
), ( 1√

3
,− 1√

3
,− 1√

3
), (− 1√

3
, 1√

3
, 1√

3
), (− 1√

3
, 1√

3
,− 1√

3
),

(− 1√
3
,− 1√

3
, 1√

3
), (− 1√

3
,− 1√

3
,− 1√

3
).

The values of f(x, y, z) = xyz at the points we found are:
• At (x, 0, 0) with x2 ≤ 1, f(x, 0, 0) = 0.
• At (0, y, 0) with y2 ≤ 1, f(0, y, 0) = 0.
• At (0, 0, z) with z2 ≤ 1, f(0, 0, z) = 0.
• f( 1√

3
, 1√

3
, 1√

3
) = 1

3
√
3

• f( 1√
3
, 1√

3
,− 1√

3
) = − 1

3
√
3

• f( 1√
3
,− 1√

3
, 1√

3
) = − 1

3
√
3
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• f( 1√
3
,− 1√

3
,− 1√

3
) = 1

3
√
3

• f(− 1√
3
, 1√

3
, 1√

3
) = − 1

3
√
3

• f(− 1√
3
, 1√

3
,− 1√

3
) = 1

3
√
3

• f(− 1√
3
,− 1√

3
, 1√

3
) = 1

3
√
3

• f(− 1√
3
,− 1√

3
,− 1√

3
) = − 1

3
√
3

From this, the global maximum value is 1
3
√
3

and the global minimum value is − 1
3
√
3
.

(2) • Critical points of the original domain.
Note

∇f(x, y, z) = 〈2x, 2y, 2z〉

So the critical point is (0, 0, 0).
• Lagrange critical points on the boundary.

The boundary domain is expressed as g(x, y, z) = 1 where g(x, y, z) = x4 + y4 +
z4. Lagrange critical points happen when ∇f(x, y, z) is parallel to ∇g(x, y, z) =
〈4x3, 4y3, 4z3〉. This happens either when∇g(x, y, z) is zero or when there is λ such
that ∇f(x, y, z) = λ∇g(x, y, z).

– If ∇g(x, y, z) = 〈0, 0, 0〉, then x = y = z = 0, which contradicts the domain
equation x4 + y4 + z4 = 1.

– If there is λ such that 〈2x, 2y, 2z〉 = λ〈4x3, 4y3, 4z3〉, we have

2x = 4λx3, 2y = 4λy3, 2z = 4λz3

From the �rst equation, either x = 0 or 2 = 4λx2.
∗ If x = 0, the second equation tells either y = 0 or 2 = 4λy2.
· If y = 0, then x = y = 0 implies z4 = 1, so z2 = 1. Thus, either z = 1 or
z = −1.
Thus, the Lagrange critical points we obtain in this case are (0, 0, 1),
(0, 0,−1).
· If 2 = 4λy2, then the third equation tells either z = 0 or 2 = 4λz2.

� If z = 0, then x = z = 0 implies y4 = 1, so y2 = 1. Thus, either
y = 1 or y = −1. Thus, the Lagrange critical points we obtain in this
case are (0, 1, 0), (0,−1, 0).

� If 2 = 4λz2, then y2 = 1
2λ

= z2 while x = 0, so 2y4 = 1 or
y4 = 1

2
, so y2 = 1√

2
= z2. Thus, y and z are either 1

4√2 or − 1
4√2 .

Thus, the Lagrange critical points we obtain in this case are (0, 1
4√2 ,

1
4√2),

(0, 1
4√2 ,−

1
4√2), (0,−

1
4√2 ,

1
4√2), (0,−

1
4√2 ,−

1
4√2).

∗ If 2 = 4λx2, then x2 = 1
2λ

. The second equation tells either y = 0 or
2 = 4λy2.
· If y = 0, then the third equation tells either z = 0 or 2 = 4λz2.

� If z = 0, then y = z = 0 implies that x4 = 1, or x2 = 1. Thus, x is
either −1 or 1. Thus, the Lagrange critical points we obtain in this case
are (1, 0, 0), (−1, 0, 0).
� If 2 = 4λz2, then z2 = 1

2λ
. So x2 = z2 while y = 0, so 2x4 = 1,

or x4 = 1
2
, or x2 = 1√

2
= z2. Thus, x and z are either 1

4√2 or − 1
4√2 .
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Thus, the Lagrange critical points we obtain in this case are ( 1
4√2 , 0,

1
4√2),

( 1
4√2 , 0,−

1
4√2), (−

1
4√2 , 0,

1
4√2), (−

1
4√2 , 0,−

1
4√2).

∗ If 2 = 4λy2, then y2 = 1
2λ

= x2. The third equation tells either z = 0 or
2 = 4λz2.
· If z = 0, then 2x4 = 1, or x4 = 1

2
, or x2 = 1√

2
= y2. Thus, x and y are

either 1
4√2 or − 1

4√2 .
Thus, the Lagrange critical points we obtain in this case are ( 1

4√2 ,
1
4√2 , 0),

( 1
4√2 ,−

1
4√2 , 0), (−

1
4√2 ,

1
4√2 , 0), (−

1
4√2 ,−

1
4√2 , 0).

· If 2 = 4λz2, then z2 = 1
2λ

= x2 = y2, so 3x4 = 1, or x4 = 1
3
, or

x2 = y2 = z2 = 1√
3
. Thus, x, y, z are either 1

4√3 or − 1
4√3 .

Thus, the Lagrange critical points we obtain in this case are ( 1
4√3 ,

1
4√3 ,

1
4√3),

( 1
4√3 ,

1
4√3 ,−

1
4√3), (

1
4√3 ,−

1
4√3 ,

1
4√3), (

1
4√3 ,−

1
4√3 ,−

1
4√3), (−

1
4√3 ,

1
4√3 ,

1
4√3), (−

1
4√3 ,

1
4√3 ,−

1
4√3),

(− 1
4√3 ,−

1
4√3 ,

1
4√3), (−

1
4√3 ,−

1
4√3 ,−

1
4√3).

The values of f(x, y, z) = x2 + y2 + z2 at the points we found are:
• f(0, 0, 0) = 0
• f(0, 0, 1) = 1
• f(0, 0,−1) = 1
• f(0, 1, 0) = 1
• f(0,−1, 0) = 1
• f(0, 1

4√2 ,
1
4√2) =

√
2

• f(0, 1
4√2 ,−

1
4√2) =

√
2

• f(0,− 1
4√2 ,

1
4√2) =

√
2

• f(0,− 1
4√2 ,−

1
4√2) =

√
2

• f(1, 0, 0) = 1
• f(−1, 0, 0) = 1
• f( 1

4√2 , 0,
1
4√2) =

√
2

• f( 1
4√2 , 0,−

1
4√2) =

√
2

• f(− 1
4√2 , 0,

1
4√2) =

√
2

• f(− 1
4√2 , 0,−

1
4√2) =

√
2

• f( 1
4√2 ,

1
4√2 , 0) =

√
2

• f( 1
4√2 ,−

1
4√2 , 0) =

√
2

• f(− 1
4√2 ,

1
4√2 , 0) =

√
2

• f(− 1
4√2 ,−

1
4√2 , 0) =

√
2

• f( 1
4√3 ,

1
4√3 ,

1
4√3) =

√
3

• f( 1
4√3 ,

1
4√3 ,−

1
4√3) =

√
3

• f( 1
4√3 ,−

1
4√3 ,

1
4√3) =

√
3

• f( 1
4√3 ,−

1
4√3 ,−

1
4√3) =

√
3

• f(− 1
4√3 ,

1
4√3 ,

1
4√3) =

√
3
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• f(− 1
4√3 ,

1
4√3 ,−

1
4√3) =

√
3

• f(− 1
4√3 ,−

1
4√3 ,

1
4√3) =

√
3

• f(− 1
4√3 ,−

1
4√3 ,−

1
4√3) =

√
3

Thus, the global maximum value is
√
3, and the global minimum value is 0.

(3) • Critical points of the original domain.
Note

∇f(x, y, z) = 〈2x, 2y, 2z〉
so the critical point is (0, 0, 0).
• Lagrange critical points of the boundary domain.

The boundary domain is expressed as g(x, y, z) = 1 where g(x, y, z) = x2 + y2 +
z2 + xy − xz − yz. Lagrange critical points happen when ∇f(x, y, z) is parallel to
∇g(x, y, z) = 〈2x+y−z, 2y+x−z, 2z−x−y〉. This happens when either∇g(x, y, z)
is zero or there is a number λ such that∇f(x, y, z) = λ∇g(x, y, z).

– If∇g(x, y, z) = 〈0, 0, 0〉, we have
2x+ y − z = 0, 2y + x− z = 0, 2z − x− y = 0

If we add all three, we get 2x + 2y = 0, or x + y = 0. So 2z = 0, so z = 0.
So 2x + y = x = 0, so x = 0, and y = 0. But x = y = z = 0 contradicts the
boundary domain equation x2 + y2 + z2 + xy − xz − yz = 1.

– If there is λ such that∇f(x, y, z) = λ∇g(x, y, z) we have
2x = λ(2x+ y − z), 2y = λ(2y + x− z), 2z = λ(2z − x− y)

If you subtract the second equation from the �rst equation, you get
2(x− y) = λ(x− y),

so either x− y = 0 or λ = 2.
∗ If x− y = 0, then x = y, so we have

2x = λ(3x− z), z = λ(z − x)
If you add them you get

2x+ z = 2λx

so z = 2(λ − 1)x. On the other hand, the second equation tells you λx =
(λ− 1)z, so
λx = (λ− 1)z = 2(λ− 1)2x = (2λ2 − 4λ+ 2)x

so either x = 0 or λ = 2λ2 − 4λ+ 2.
· If x = 0, then y = 0, so the domain equation becomes z2 = 1. Thus,

either z = 1 or z = −1.
Thus, the Lagrange critical points we obtain in this case are (0, 0, 1),
(0, 0,−1).
· If λ = 2λ2 − 4λ+ 2, then 2λ2 − 5λ+ 2 = 0, so (2λ− 1)(λ− 2) = 0, so

either λ = 1
2

or λ = 2.
� If λ = 1

2
, then we have

2x =
1

2
(3x− z), z =

1

2
(z − x)
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or
4x = 3x− z, 2z = z − x

or z = −x. So x = y = −z. The domain equation becomes 6x2 = 1, or
x2 = 1

6
. Thus either x = 1√

6
or x = − 1√

6
, and y = x and z = −x. Thus,

the Lagrange critical points we obtain in this case are ( 1√
6
, 1√

6
,− 1√

6
),

(− 1√
6
,− 1√

6
, 1√

6
).

� The λ = 2 case is subsumed to the later more general case below.
∗ If λ = 2, then we have
x = 2x+ y − z, y = 2y + x− z, z = 2z − x− y,
so all three are exactly equivalent to x + y = z. The boundary domain
equation becomes

x2 + y2 + (x+ y)2 + xy − (x+ y)2 = 1,

or x2 + xy + y2 = 1.
Thus, the Lagrange critical points we obtain in this case are (x, y, x + y),
where x2 + xy + y2 = 1.

The values of f(x, y, z) = x2 + y2 + z2 at the points we found are
• f(0, 0, 0) = 0
• f(0, 0, 1) = 1
• f(0, 0,−1) = 1
• f( 1√

6
, 1√

6
,− 1√

6
) = 1

2

• f(− 1√
6
,− 1√

6
, 1√

6
) = 1

2

• At (x, y, x + y) with x2 + xy + y2 = 1, f(x, y, x + y) = x2 + y2 + (x + y)2 =
2x2 + 2xy + 2y2 = 2(x2 + xy + y2) = 2.

Thus, the global maximum value is 2 and the global minimum value is 0.
�

Exercise 3. Find the global maximum and minimum values of f on the given domain.
(1) f(x, y, z) = z on the domain {x2 + y2 + z2 = 1, x+ y − z = 0}
(2) f(x, y, z) = x2 + y2 on the domain {x2 + y2 + z2 = 50, x− z = 0}

Solution. The problems in this Exercise are in the case of 3 variables and 2 equalities. In this case,
we know we need to look for the Lagrange critical points of the given domain.

(1) The domain equations are g(x, y, z) = 1 and h(x, y, z) = 0 where g(x, y, z) = x2+y2+z2

and h(x, y, z) = x+ y − z. Thus
∇f(x, y, z) = 〈0, 0, 1〉, ∇g(x, y, z) = 〈2x, 2y, 2z〉, ∇h(x, y, z) = 〈1, 1,−1〉

Lagrange critical points are when either∇g(x, y, z) or∇h(x, y, z) are zero, or∇f(x, y, z) =
λ∇g(x, y, z)+µ∇h(x, y, z). Note that∇h(x, y, z) is not zero, and∇g(x, y, z) = 〈2x, 2y, 2z〉
is zero if x = y = z = 0, which does not lie in the domain because of the domain equation
x2 + y2 + z2 = 1. Thus we need to solve

∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z)
or

0 = 2λx+ µ, 0 = 2λy + µ, 1 = 2λz − µ
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From the �rst two equations, 2λx = 2λy, so either λ = 0 or x = y.
• If λ = 0, we have µ = 0 and 1 = −µ, which is a contradiction.
• If x = y, the domain equations say 2x2+z2 = 1 and 2x = z. Thus, 6x2 = 1, or x = 1√

6

or − 1√
6
. Thus the Lagrange critical points are ( 1√

6
, 1√

6
, 2√

6
) and (− 1√

6
,− 1√

6
,− 2√

6
).

The values of f(x, y, z) at the Lagrange critical points are f( 1√
6
, 1√

6
, 2√

6
) = 2√

6
and f(− 1√

6
,− 1√

6
,− 2√

6
) =

− 2√
6
. Thus, the global maximum value is 2√

6
and the global minimum value is − 2√

6
.

(2) The domain equations are g(x, y, z) = 50 and h(x, y, z) = 0 where g(x, y, z) = x2 +
y2 + z2 and h(x, y, z) = x − z. This happens either when ∇g(x, y, z) = 〈2x, 2y, 2z〉
or ∇h(x, y, z) = 〈1, 0,−1〉 is zero, or when ∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z).
The former case can only happen when 2x = 2y = 2z = 0, which does not satisfy
x2 + y2 + z2 = 50. Thus we need to solve

∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z)
or

〈2x, 2y, 0〉 = λ〈2x, 2y, 2z〉+ µ〈1, 0,−1〉
or

2x = 2λx+ µ, 2y = 2λy, 0 = 2λz − µ
From the second equation, either λ = 1 or y = 0.
• If λ = 1, we have 2x = 2x+ µ or 0 = 2z − µ. So, µ = 0 and z = 0. Then x− z = 0

means x = 0, so y2 = 50. Thus the Lagrange critical points are (0,
√
50, 0) and

(0,−
√
50, 0).

• If y = 0, then x2 + z2 = 2x2 = 50, so the Lagrange critical points are (5, 0, 5) and
(−5, 0,−5).

The values at the Lagrange critical points are f(0,
√
50, 0) = 50, f(0,−

√
50, 0) = 50,

f(5, 0, 5) = 25, f(−5, 0,−5) = 25. Thus, the global maximum value is 50 and the global
minimum value is 25.

�

19. Global maxima and minima III

Exercise 1. List all the nonempty boundary pieces of the domain. Mark every boundary piece
that is a bunch of points.

(1) {(x, y) | 0 ≤ x+ y ≤ 1}
(2) {(x, y) | x2 + 4y2 ≤ 4, x ≥ 1}
(3) {(x, y) | x+ 2y2 ≤ 0, x+ y ≤ −1}
(4) {(x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 2}
(5) {(x, y, z) | x2 + y2 + z2 ≤ 1, x+ y ≤ 1, x ≥ 1

2
}

(6) {(x, y, z) | x2 + y2 = z2, x+ y ≥ 1, z ≤ 5}

Solution.
(1) What you naturally get are

{(x, y) | x+ y = 0, x+ y ≤ 1}
{(x, y) | 0 ≤ x+ y, x+ y = 1}
{(x, y) | x+ y = 0, x+ y = 1}
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The third domain is obviously empty. Also, since the condition x + y ≤ 1 is redundant
under the other condition x + y = 0, and since the condition 0 ≤ x + y is redundant
under the other condition x+y = 1, we can express the nonempty boundary pieces more
simply as

{(x, y) | x+ y = 0}
{(x, y) | x+ y = 1}

(2)
{(x, y) | x2 + 4y2 = 4, x ≥ 1}
{(x, y) | x2 + 4y2 ≤ 4, x = 1}

{(x, y) | x2 + 4y2 = 4, x = 1} ← Bunch of points
The last one is a bunch of points because it is de�ned by 2 equalities in a 2-variables
xy-plane.

(3)
{(x, y) | x+ 2y2 = 0, x+ y ≤ −1}
{(x, y) | x+ 2y2 ≤ 0, x+ y = −1}

{(x, y) | x+ 2y2 = 0, x+ y = −1} ← Bunch of points
The last one is a bunch of points because it is de�ned by 2 equalities in a 2-variables
xy-plane.

(4) What you naturally get are
{(x, y) | 0 = x, x ≤ 2, 0 ≤ y ≤ 2}
{(x, y) | 0 ≤ x, x = 2, 0 ≤ y ≤ 2}
{(x, y) | 0 ≤ x ≤ 2, 0 = y, y ≤ 2}
{(x, y) | 0 ≤ x ≤ 2, 0 ≤ y, y = 2}
{(x, y) | 0 = x, x = 2, 0 ≤ y ≤ 2}
{(x, y) | 0 = x, x ≤ 2, 0 = y, y ≤ 2}
{(x, y) | 0 = x, x ≤ 2, 0 ≤ y, y = 2}
{(x, y) | 0 ≤ x, x = 2, 0 = y, y ≤ 2}
{(x, y) | 0 ≤ x, x = 2, 0 ≤ y, y = 2}
{(x, y) | 0 ≤ x ≤ 2, 0 = y, y = 2}

But y = 0, y = 2 are con�icting conditions, and similarly x = 0, x = 2 are con�icting
conditions. Moreover, x ≤ 2 is redundant under the condition x = 0, etc. So, simplifying
it, we are left with only 8 boundary pieces,

{(x, y) | x = 0, 0 ≤ y ≤ 2}
{(x, y) | x = 2, 0 ≤ y ≤ 2}
{(x, y) | 0 ≤ x ≤ 2, y = 0}
{(x, y) | 0 ≤ x ≤ 2, y = 2}

{(x, y) | x = 0, y = 0} ← Bunch of points

{(x, y) | x = 0, y = 2} ← Bunch of points
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{(x, y) | x = 2, y = 0} ← Bunch of points

{(x, y) | x = 2, y = 2} ← Bunch of points
The last four domains are bunches of points because they are de�ned by 2 equalities in a
2-variables xy-plane.

(5)

{(x, y, z) | x2 + y2 + z2 = 1, x+ y ≤ 1, x ≥ 1

2
}

{(x, y, z) | x2 + y2 + z2 ≤ 1, x+ y = 1, x ≥ 1

2
}

{(x, y, z) | x2 + y2 + z2 ≤ 1, x+ y ≤ 1, x =
1

2
}

{(x, y, z) | x2 + y2 + z2 = 1, x+ y = 1, x ≥ 1

2
}

{(x, y, z) | x2 + y2 + z2 = 1, x+ y ≤ 1, x =
1

2
}

{(x, y, z) | x2 + y2 + z2 ≤ 1, x+ y = 1, x =
1

2
}

{(x, y, z) | x2 + y2 + z2 = 1, x+ y = 1, x =
1

2
} ← Bunch of points

The last one is a bunch of points because it is de�ned by 3 equalities in a 3-variables
xyz-space.

(6)
{(x, y, z) | x2 + y2 = z2, x+ y = 1, z ≤ 5}
{(x, y, z) | x2 + y2 = z2, x+ y ≥ 1, z = 5}

{(x, y, z) | x2 + y2 = z2, x+ y = 1, z = 5} ← Bunch of points
The last one is a bunch of points because it is de�ned by 3 equalities in a 3-variables
xyz-space.

�

Exercise 2. Find the global maximum and minimum values of f(x, y) on the domain D.
(1) f(x, y) = x2 + y2 − 2x, and D is the triangular domain with vertices (2, 0), (0, 2) and

(0,−2), including boundaries.
(2) f(x, y) = x+y+xy, andD is the triangular domain with vertices (0, 0), (0, 2), and (4, 0),

including boundaries.
(3) f(x, y) = x2 + y2 + x2y + 4, and D = {(x, y) | − 1 ≤ x ≤ 1, −1 ≤ y ≤ 1}.
(4) f(x, y) = x2 + xy + y2 − 6y, and D = {(x, y) | − 3 ≤ x ≤ 3, 0 ≤ y ≤ 5}.
(5) f(x, y) = x2 + 2y2 − 2x− 4y + 1, and D = {(x, y) | 0 ≤ x ≤ 2, 0 ≤ y ≤ 3}.

Solution. (1) The domain is expressed as

{x ≥ 0, x+ y ≤ 2, y − x ≥ −2}
There are 7 types of points you have to look for.
(a) Critical points of the original domain.
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(b) Lagrange critical points of the boundary piece #1,
{x = 0, x+ y ≤ 2, y − x ≥ −2}

(c) Lagrange critical points of the boundary piece #2,
{x ≥ 0, x+ y = 2, y − x ≥ −2}

(d) Lagrange critical points of the boundary piece #3,
{x ≥ 0, x+ y ≤ 2, y − x = −2}

(e) All points of the boundary piece #4,
{x = 0, x+ y = 2, y − x ≥ −2}

(f) All points of the boundary piece #5,
{x = 0, x+ y ≤ 2, y − x = −2}

(g) All points of the boundary piece #6,
{x ≥ 0, x+ y = 2, y − x = −2}

Let g(x, y) = x, h(x, y) = x+ y, i(x, y) = y − x.
(a) Critical points of the original domain.

The equations are
∇f(x, y) = 〈0, 0〉, g(x, y) ≥ 0, h(x, y) ≤ 2, i(x, y) ≥ −2.

As ∇f(x, y) = 〈2x− 2, 2y〉, this is equal to 〈0, 0〉 exactly when x = 1 and y = 0. As
(1, 0) satis�es all three inequalities, x ≥ 0, x+ y ≤ 2, y − x ≥ −2, we get (1, 0) on
the list.

(b) Lagrange critical points of the boundary piece #1,
{x = 0, x+ y ≤ 2, y − x ≥ −2}

Case A The equations are
∇g(x, y) = 〈0, 0〉, g(x, y) = 0, h(x, y) ≤ 2, i(x, y) ≥ −2.
As ∇g(x, y) = 〈1, 0〉, this can never be equal to 〈0, 0〉. So there are no points
from this case.

Case B The equations are
∇f(x, y) = λ∇g(x, y), g(x, y)− 0, h(x, y) ≤ 2, i(x, y) ≥ −2.

We have 〈2x − 2, 2y〉 = λ〈1, 0〉 = λλ, 0〉, so this means that 2y = 0, or y = 0.
As x = 0, and (0, 0) satis�es both x + y ≤ 2 and y − x ≥ −2, we have (0, 0)

on the list.
(c) Lagrange critical points of the boundary piece #2,

{x ≥ 0, x+ y = 2, y − x ≥ −2}
Case A The equations are

∇h(x, y) = 〈0, 0〉, g(x, y) ≥ 0, h(x, y) = 2, i(x, y) ≥ −2.
As ∇h(x, y) = 〈1, 1〉, this is never 〈0, 0〉. Thus there are no points from this
case.
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Case B The equations are
∇f(x, y) = λ∇h(x, y), g(x, y) ≥ 0, h(x, y) = 2, i(x, y) ≥ −2.

We have 〈2x − 2, 2y〉 = λ〈1, 1〉 = 〈λ, λ〉, this implies that 2x − 2 = 2y. Thus
x− 1 = y. As x+ y = 2, we have 2x− 1 = 2, or 2x = 3, or x = 3

2
, and y = 1

2
.

This satis�es both x ≥ 0 and y − x ≥ −2, so we get (
3

2
,
1

2
) on the list.

(d) Lagrange critical points of the boundary piece #3,
{x ≥ 0, x+ y ≤ 2, y − x = −2}

Case A The equations are
∇i(x, y) = 〈0, 0〉, g(x, y) ≥ 0, h(x, y) ≤ 2, i(x, y) = −2.

As ∇i(x, y) = 〈−1, 1〉, this is never equal to 〈0, 0〉. Thus there are no points
from this case.

Case B The equations are
∇f(x, y) = λ∇i(x, y), g(x, y) ≥ 0, h(x, y) ≤ 2, i(x, y) = −2.

We have 〈2x − 2, 2y〉 = λ〈−1, 1〉 = 〈−λ, λ〉, so this means 2x − 2 = −2y, or
x− 1 = −y, or x + y = 1. As y − x = −2, we have 2y = −1, or y = −1

2
, and

x = 3
2
. This satis�es both x ≥ 0 and x+ y ≤ 2, so we get (

3

2
,−1

2
) on the list.

(e) All points of the boundary piece #4,
{x = 0, x+ y = 2, y − x ≥ −2}

The equations are just the domain equations, so x = 0 and y = 2. This satis�es
y − x ≥ −2. Thus we get a point (0, 2) on the list.

(f) All points of the boundary piece #5,
{x = 0, x+ y ≤ 2, y − x = −2}

The equations are just the domain equations, so x = 0 and y = −2. This satis�es
x+ y ≤ 2. Thus we get a point (0,−2) on the list.

(g) All points of the boundary piece #6,
{x ≥ 0, x+ y = 2, y − x = −2}

The equations are just the domain equations. Adding x+ y = 2 and y − x = −2, we
get 2y = 0, or y = 0. From this, x = 2. As x ≥ 2 is satis�ed, we get a point (2, 0)

on the list.
The list of values on the candidate points is:
• f(1, 0) = −1
• f(0, 0) = 0
• f(3

2
, 1
2
) = −1

2

• f(3
2
,−1

2
) = −1

2
• f(0, 2) = 4
• f(0,−2) = 4
• f(2, 0) = 0
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So the global maximum value is 4, and the global minimum value is −1.
(2) The domain is expressed as

{x ≥ 0, y ≥ 0, x+ 2y ≤ 4}

There are 7 types of points you are looking for.
(a) Critical points of the original domain.
(b) Lagrange critical points of the boundary piece #1,

{x = 0, y ≥ 0, x+ 2y ≤ 4}

(c) Lagrange critical points of the boundary piece #2,

{x ≥ 0, y = 0, x+ 2y ≤ 4}

(d) Lagrange critical points of the boundary piece #3,

{x ≥ 0, y ≥ 0, x+ 2y = 4}

(e) All points of the boundary piece #4,

{x = 0, y = 0, x+ 2y ≤ 4}

(f) All points of the boundary piece #5,

{x = 0, y ≥ 0, x+ 2y = 4}

(g) All points of the boundary piece #6,

{x ≥ 0, y = 0, x+ 2y = 4}

Let g(x, y) = x, h(x, y) = y, i(x, y) = x+ 2y.
(a) Critical points of the original domain.

The equations are

∇f(x, y) = 〈0, 0〉, g(x, y) ≥ 0, h(x, y) ≥ 0, i(x, y) ≤ 4

As ∇f(x, y) = 〈1 + y, 1 + x〉, the equation ∇f(x, y) = 〈0, 0〉 means x = y = −1.
This is not on the domain, so we get no points from this case.

(b) Lagrange critical points of the boundary piece #1,

{x = 0, y ≥ 0, x+ 2y ≤ 4}

Case A The equations are

∇g(x, y) = 〈0, 0〉, g(x, y) = 0, h(x, y) ≥ 0, i(x, y) ≤ 4

As ∇g(x, y) = 〈1, 0〉 is never 〈0, 0〉, we get no points from this case.
Case B The equations are

∇f(x, y) = λ∇g(x, y), g(x, y) = 0, h(x, y) ≥ 0, i(x, y) ≤ 4

We have 〈1+y, 1+x〉 = λ〈1, 0〉 = 〈λ, 0〉. This implies that x = −1. As x = −1
is not in the domain, we get no points from this case.

(c) Lagrange critical points of the boundary piece #2,

{x ≥ 0, y = 0, x+ 2y ≤ 4}
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Case A The equations are
∇h(x, y) = 〈0, 0〉, g(x, y) ≥ 0, h(x, y) = 0, i(x, y) ≤ 4

As ∇h(x, y) = 〈0, 1〉 is never 〈0, 0〉, we get no points from this case.
Case B The equations are

∇f(x, y) = λ∇h(x, y), g(x, y) ≥ 0, h(x, y) = 0, i(x, y) ≤ 4

We have 〈1 + y, 1 + x〉 = λ〈0, 1〉 = 〈0, λ〉, which means y = −1. As y = −1 is
not in the domain, we get no points from this case.

(d) Lagrange critical points of the boundary piece #3,
{x ≥ 0, y ≥ 0, x+ 2y = 4}

Case A The equations are
∇i(x, y) = 〈0, 0〉, g(x, y) ≥ 0, h(x, y) ≥ 0, i(x, y) = 4

As ∇i(x, y) = 〈1, 2〉 is never 〈0, 0〉, we get no points from this case.
Case B The equations are

∇f(x, y) = λ∇i(x, y), g(x, y) ≥ 0, h(x, y) ≥ 0, i(x, y) = 4

We have 〈1 + y, 1 + x〉 = λ〈1, 2〉 = 〈λ, 2λ〉, we have 2(1 + y) = 1 + x, or
1 + 2y = x. As we also have x+ 2y = 4, this means that 4y + 1 = 4, or y = 3

4
,

and x = 1 + 3
2
= 5

2
. As this is not in the domain, we get no points from this

case.
(e) All points of the boundary piece #4,

{x = 0, y = 0, x+ 2y ≤ 4}

This is just the point (0, 0) .
(f) All points of the boundary piece #5,

{x = 0, y ≥ 0, x+ 2y = 4}

From x = 0, 2y = 4, so y = 2, so this is the point (0, 2) .
(g) All points of the boundary piece #6,

{x ≥ 0, y = 0, x+ 2y = 4}

From y = 0, x = 4, so this is the point (4, 0) .
The list of values on the candidate points is:
• f(0, 0) = 0
• f(0, 2) = 2
• f(4, 0) = 4

So, the global maximum value is 4, and the global minimum value is 0.
(3) There are 9 types of points we need to look for.

(a) Critcial points of the original domain.
(b) Lagrange critical points of the boundary piece #1,

{x = −1, −1 ≤ y ≤ 1}
(c) Lagrange critical points of the boundary piece #2,

{x = 1, −1 ≤ y ≤ 1}
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(d) Lagrange critical points of the boundary piece #3,

{−1 ≤ x ≤ 1, y = −1}
(e) Lagrange critical points of the boundary piece #4,

{−1 ≤ x ≤ 1, y = 1}
(f) All points of the boundary piece #5,

{x = −1, y = −1}
(g) All points of the boundary piece #6,

{x = −1, y = 1}
(h) All points of the boundary piece #7,

{x = 1, y = −1}
(i) All points of the boundary piece #8,

{x = 1, y = 1}
Let g(x, y) = x, h(x, y) = y.
(a) Critcial points of the original domain.

The equations are

∇f(x, y) = 〈0, 0〉, −1 ≤ g(x, y) ≤ 1, −1 ≤ h(x, y) ≤ 1

As ∇f(x, y) = 〈2x + 2xy, 2y + x2〉, this is equal to 〈0, 0〉 means 2x + 2xy = 0 and
2y + x2 = 0. From 2x+ 2xy = 2x(1 + y) = 0, we know either x = 0 or y = −1.
• If x = 0, then 2y + x2 = 0 implies y = 0. As (0, 0) is in the domain, we get

(0, 0) as a point on the list.
• If y = −1, then 2y + x2 = 0 implies x2 = 2. So either x =

√
2 or x = −

√
2.

As we need −1 ≤ x ≤ 1, neither of the options is in the domain, so we get no
points in this case.

(b) Lagrange critical points of the boundary piece #1,

{x = −1, −1 ≤ y ≤ 1}
Case A The equations are

∇g(x, y) = 〈0, 0〉, g(x, y) = −1, −1 ≤ h(x, y) ≤ 1

As ∇g(x, y) = 〈1, 0〉, this is never 〈0, 0〉. Thus we get no points in this case.
Case B The equations are

∇f(x, y) = λ∇g(x, y), g(x, y) = −1, −1 ≤ h(x, y) ≤ 1

This is 〈2x+ 2xy, 2y+ x2〉 = λ〈1, 0〉 = 〈λ, 0〉, so 2y+ x2 = 0. As x = −1, this

means 2y = −1, or y = −1
2
. As this is in the domain, we get (−1,−1

2
) as a

point on the list.
(c) Lagrange critical points of the boundary piece #2,

{x = 1, −1 ≤ y ≤ 1}
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Case A The equations are

∇g(x, y) = 〈0, 0〉, g(x, y) = 1, −1 ≤ h(x, y) ≤ 1

As ∇g(x, y) = 〈1, 0〉, this is never 〈0, 0〉. Thus we get no points in this case.
Case B The equations are

∇f(x, y) = λ∇g(x, y), g(x, y) = 1, −1 ≤ h(x, y) ≤ 1

This is 〈2x + 2xy, 2y + x2〉 = λ〈1, 0〉 = 〈λ, 0〉, so 2y + x2 = 0. As x = 1, this

means 2y = −1, or y = −1
2
. As this is in the domain, we get (1,−1

2
) as a

point on the list.
(d) Lagrange critical points of the boundary piece #3,

{−1 ≤ x ≤ 1, y = −1}

Case A The equations are

∇h(x, y) = 〈0, 0〉, −1 ≤ g(x, y) ≤ 1, h(x, y) = −1

As ∇h(x, y) = 〈0, 1〉, this is never 〈0, 0〉. Thus we get no points in this case.
Case B The equations are

∇f(x, y) = λ∇h(x, y), −1 ≤ g(x, y) ≤ 1, h(x, y) = −1

This is 〈2x + 2xy, 2y + x2〉 = λ〈0, 1〉 = 〈0, λ〉, so 2x + 2xy = 0. As y = −1,
we actually see that any point (x,−1) with −1 ≤ x ≤ 1 is a Lagrange critical
point.

(e) Lagrange critical points of the boundary piece #4,

{−1 ≤ x ≤ 1, y = 1}

Case A The equations are

∇h(x, y) = 〈0, 0〉, −1 ≤ g(x, y) ≤ 1, h(x, y) = 1

As ∇h(x, y) = 〈0, 1〉, this is never 〈0, 0〉. Thus we get no points in this case.
Case B The equations are

∇f(x, y) = λ∇h(x, y), −1 ≤ g(x, y) ≤ 1, h(x, y) = 1

This is 〈2x+ 2xy, 2y + x2〉 = λ〈0, 1〉 = 〈0, λ〉, so 2x+ 2xy = 0. As y = 1, we
have 4x = 0, so x = 0. As this is in the domain, we get (0, 1) as a point on the
list.

(f) All points of the boundary piece #5,

{x = −1, y = −1}

This is just the point (−1,−1) .
(g) All points of the boundary piece #6,

{x = −1, y = 1}

This is just the point (−1, 1) .
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(h) All points of the boundary piece #7,

{x = 1, y = −1}

This is just the point (1,−1) .
(i) All points of the boundary piece #8,

{x = 1, y = 1}

This is just the point (1, 1) .
The list of values on the candidate points are:
• f(0, 0) = 4
• f(−1,−1

2
) = 1− 1

4
− 1

2
+ 4 = 17

4

• f(1,−1
2
) = 1− 1

4
− 1

2
+ 4 = 17

4

• For −1 ≤ x ≤ 1, f(x,−1) = x2 + 1− x2 + 4 = 5
• f(0, 1) = 5
• f(−1,−1) = 5
• f(−1, 1) = 7
• f(1,−1) = 5
• f(1, 1) = 7

So, the global maximum value is 7, and the global minimum value is 4.
(4) There are 9 types of points we need to look for.

(a) Critcial points of the original domain.
(b) Lagrange critical points of the boundary piece #1,

{x = −3, 0 ≤ y ≤ 5}
(c) Lagrange critical points of the boundary piece #2,

{x = 3, 0 ≤ y ≤ 5}
(d) Lagrange critical points of the boundary piece #3,

{−3 ≤ x ≤ 3, y = 0}
(e) Lagrange critical points of the boundary piece #4,

{−3 ≤ x ≤ 3, y = 5}
(f) All points of the boundary piece #5,

{x = −3, y = 0}
(g) All points of the boundary piece #6,

{x = −3, y = 5}
(h) All points of the boundary piece #7,

{x = 3, y = 0}
(i) All points of the boundary piece #8,

{x = 3, y = 5}
Let g(x, y) = x, h(x, y) = y.
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(a) Critcial points of the original domain.
The equations are

∇f(x, y) = 〈0, 0〉, −3 ≤ g(x, y) ≤ 3, 0 ≤ h(x, y) ≤ 5

As∇f(x, y) = 〈2x+ y, 2y− 6〉, this being equal to 〈0, 0〉means that 2x+ y = 0 and
2y − 6 = 0. In particular, y = 3 and 2x = −3, so x = −3

2
. As this is in the domain,

we get a point (−3

2
, 3) on the list.

(b) Lagrange critical points of the boundary piece #1,

{x = −3, 0 ≤ y ≤ 5}
Case A The equations are

∇g(x, y) = 〈0, 0〉, g(x, y) = −3, 0 ≤ h(x, y) ≤ 5

As ∇g(x, y) = 〈1, 0〉 is never 〈0, 0〉, we get no points in this case.
Case B

∇f(x, y) = λ∇g(x, y), g(x, y) = −3, 0 ≤ h(x, y) ≤ 5

We have 〈2x + y, 2y − 6〉 = λ〈1, 0〉 = 〈λ, 0〉, so 2y − 6 = 0, or y = 3. As
x = −3, we get (−3, 3) on the list.

(c) Lagrange critical points of the boundary piece #2,

{x = 3, 0 ≤ y ≤ 5}
Case A The equations are

∇g(x, y) = 〈0, 0〉, g(x, y) = 3, 0 ≤ h(x, y) ≤ 5

As ∇g(x, y) = 〈1, 0〉 is never 〈0, 0〉, we get no points in this case.
Case B

∇f(x, y) = λ∇g(x, y), g(x, y) = 3, 0 ≤ h(x, y) ≤ 5

We have 〈2x+ y, 2y− 6〉 = λ〈1, 0〉 = 〈λ, 0〉, so 2y− 6 = 0, or y = 3. As x = 3,
we get (3, 3) on the list.

(d) Lagrange critical points of the boundary piece #3,

{−3 ≤ x ≤ 3, y = 0}
Case A The equations are

∇h(x, y) = 〈0, 0〉, −3 ≤ g(x, y) ≤ 3, h(x, y) = 0

As ∇h(x, y) = 〈0, 1〉 is never 〈0, 0〉, we get no points in this case.
Case B

∇f(x, y) = λ∇h(x, y), −3 ≤ g(x, y) ≤ 3, h(x, y) = 0

We have 〈2x+ y, 2y− 6〉 = λ〈0, 1〉 = 〈0, λ〉, so 2x+ y = 0. As y = 0, we have
x = 0. This is in the domain, so we get (0, 0) on the list.

(e) Lagrange critical points of the boundary piece #4,

{−3 ≤ x ≤ 3, y = 5}
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Case A The equations are

∇h(x, y) = 〈0, 0〉, −3 ≤ g(x, y) ≤ 3, h(x, y) = 5

As ∇h(x, y) = 〈0, 1〉 is never 〈0, 0〉, we get no points in this case.
Case B

∇f(x, y) = λ∇h(x, y), −3 ≤ g(x, y) ≤ 3, h(x, y) = 5

We have 〈2x+ y, 2y− 6〉 = λ〈0, 1〉 = 〈0, λ〉, so 2x+ y = 0. As y = 5, x = −5
2
.

As this is on the domain, we get (−5

2
, 5) on the list.

(f) All points of the boundary piece #5,

{x = −3, y = 0}

This is just the point (−3, 0) .
(g) All points of the boundary piece #6,

{x = −3, y = 5}

This is just the point (−3, 5) .
(h) All points of the boundary piece #7,

{x = 3, y = 0}

This is just the point (3, 0) .
(i) All points of the boundary piece #8,

{x = 3, y = 5}

This is just the point (3, 5) .
The list of values on the candidate points is:
• f(−3

2
, 3) = (−3

2
)2 − 3

2
· 3 + 32 − 18 = 9

4
+ 9

2
− 18 = 27

4
− 18 = −45

4

• f(−3, 3) = (−3)2 − 3 · 3 + 32 − 18 = −9
• f(3, 3) = 32 + 3 · 3 + 32 − 18 = 9
• f(0, 0) = 0
• f(−5

2
, 5) = (−5

2
)2 − 5

2
· 5 + 52 − 30 = 25

4
+ 25

2
− 30 = 75

4
− 30 = −45

4

• f(−3, 0) = 9
• f(−3, 5) = (−3)2 − 15 + 52 − 30 = −11
• f(3, 0) = 9
• f(3, 5) = 32 + 15 + 52 − 30 = 19

So the global maximum value of f is 19, and the global minimum value of f is −45
4

.
(5) There are 9 types of points we need to look for.

(a) Critcial points of the original domain.
(b) Lagrange critical points of the boundary piece #1,

{x = 0, 0 ≤ y ≤ 3}

(c) Lagrange critical points of the boundary piece #2,

{x = 2, 0 ≤ y ≤ 3}
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(d) Lagrange critical points of the boundary piece #3,

{0 ≤ x ≤ 2, y = 0}

(e) Lagrange critical points of the boundary piece #4,

{0 ≤ x ≤ 2, y = 3}

(f) All points of the boundary piece #5,

{x = 0, y = 0}

(g) All points of the boundary piece #6,

{x = 0, y = 3}

(h) All points of the boundary piece #7,

{x = 2, y = 0}

(i) All points of the boundary piece #8,

{x = 2, y = 3}

Let g(x, y) = x, h(x, y) = y.
(a) Critcial points of the original domain.

The equations are

∇f(x, y) = 〈0, 0〉, 0 ≤ g(x, y) ≤ 2, 0 ≤ h(x, y) ≤ 3

As ∇f(x, y) = 〈2x − 2, 4y − 4〉, this being equal to 〈0, 0〉 means x = 1, y = 1. As
this is in the domain, we get (1, 1) in the list.

(b) Lagrange critical points of the boundary piece #1,

{x = 0, 0 ≤ y ≤ 3}

Case A The equations are

∇g(x, y) = 〈0, 0〉, g(x, y) = 0, 0 ≤ h(x, y) ≤ 3

As ∇g(x, y) = 〈1, 0〉 is never 〈0, 0〉, there are no points from this case.
Case B

∇f(x, y) = λ∇g(x, y), g(x, y) = 0, 0 ≤ h(x, y) ≤ 3

We have 〈2x− 2, 4y− 4〉 = λ〈1, 0〉 = 〈λ, 0〉, so 4y− 4 = 0, or y = 1. As x = 0,
and as this is on the domain, we get (0, 1) on the list.

(c) Lagrange critical points of the boundary piece #2,

{x = 2, 0 ≤ y ≤ 3}

Case A The equations are

∇g(x, y) = 〈0, 0〉, g(x, y) = 2, 0 ≤ h(x, y) ≤ 3

As ∇g(x, y) = 〈1, 0〉 is never 〈0, 0〉, there are no points from this case.
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Case B
∇f(x, y) = λ∇g(x, y), g(x, y) = 2, 0 ≤ h(x, y) ≤ 3

We have 〈2x− 2, 4y− 4〉 = λ〈1, 0〉 = 〈λ, 0〉, so 4y− 4 = 0, or y = 1. As x = 2,
and as this is on the domain, we get (2, 1) on the list.

(d) Lagrange critical points of the boundary piece #3,
{0 ≤ x ≤ 2, y = 0}

Case A The equations are
∇h(x, y) = 〈0, 0〉, 0 ≤ g(x, y) ≤ 2, h(x, y) = 0

As ∇h(x, y) = 〈0, 1〉 is never 〈0, 0〉, there are no points from this case.
Case B

∇f(x, y) = λ∇h(x, y), 0 ≤ g(x, y) ≤ 2, h(x, y) = 0

We have 〈2x− 2, 4y− 4〉 = λ〈0, 1〉 = 〈0, λ〉, so 2x− 2 = 0, or x = 1. As y = 0,
and as this is on the domain, we have (1, 0) on the domain.

(e) Lagrange critical points of the boundary piece #4,
{0 ≤ x ≤ 2, y = 3}

Case A The equations are
∇h(x, y) = 〈0, 0〉, 0 ≤ g(x, y) ≤ 2, h(x, y) = 3

As ∇h(x, y) = 〈0, 1〉 is never 〈0, 0〉, there are no points from this case.
Case B

∇f(x, y) = λ∇h(x, y), 0 ≤ g(x, y) ≤ 2, h(x, y) = 3

We have 〈2x− 2, 4y− 4〉 = λ〈0, 1〉 = 〈0, λ〉, so 2x− 2 = 0, or x = 1. As y = 3,
and as this is on the domain, we have (1, 3) on the list.

(f) All points of the boundary piece #5,
{x = 0, y = 0}

This is just the point (0, 0) .
(g) All points of the boundary piece #6,

{x = 0, y = 3}

This is just the point (0, 3) .
(h) All points of the boundary piece #7,

{x = 2, y = 0}

This is just the point (2, 0) .
(i) All points of the boundary piece #8,

{x = 2, y = 3}

This is just the point (2, 3) .
The list of values on the candidate points is:
• f(1, 1) = 1 + 2− 2− 4 + 1 = −2
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• f(0, 1) = 0 + 2− 0− 4 + 1 = −1
• f(2, 1) = 4 + 2− 4− 4 + 1 = −1
• f(1, 0) = 1 + 0− 2− 0 + 1 = 0
• f(1, 3) = 1 + 18− 2− 12 + 1 = 6
• f(0, 0) = 0 + 0− 0− 0 + 1 = 1
• f(0, 3) = 0 + 18− 0− 12 + 1 = 7
• f(2, 0) = 4 + 0− 4− 0 + 1 = 1
• f(2, 3) = 4 + 18− 4− 12 + 1 = 7

So the global maximum value of f(x, y) onD is 7, and the global minimum value of f(x, y)
on D is −2.

�

Exercise 3. Find the global maximum and minimum values of f on the given domain.
(1) f(x, y) = x2y, on the domain {(x, y) | x2 + y2 = 1, y ≥ 0}.
(2) f(x, y) = e−x

2−y2(x2 + 2y2), on the domain {(x, y) | x2 + y2 = 4, x+ y ≥ 0}.
(3) f(x, y, z) = xyz, on the domain {(x, y, z) | x2 + y2 + z2 = 3, z ≥ 0}.

Solution.
(1) There are two types of points we need to look for.

(a) Lagrange critical points of the original domain.
(b) All points of the boundary piece #1,

{x2 + y2 = 1, y = 0}

Let g(x, y) = x2 + y2, h(x, y) = y.
(a) Lagrange critical points of the original domain.
Case A The equations are

∇g(x, y) = 〈0, 0〉, g(x, y) = 1, h(x, y) ≥ 0

Since ∇g(x, y) = 〈2x, 2y〉, this is 〈0, 0〉 precisely when x = y = 0, which does
not satisfy x2 + y2 = 1. Thus there are no points in this case.

Case B The equations are

∇f(x, y) = λ∇g(x, y), g(x, y) = 1, h(x, y) ≥ 0

As ∇f(x, y) = 〈2xy, x2〉, we have 〈2xy, x2〉 = λ〈2x, 2y〉 = 〈2λx, 2λy〉. Thus
we get the system of equations

Eq1 · · · 2xy = 2λx

Eq2 · · ·x2 = 2λy

Eq3 · · ·x2 + y2 = 1

Eq4 · · · y ≥ 0

From Eq1 , we want to divide by 2x, and get y = λ , but this may not be possible if
x = 0 . So we get two cases.
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• The case of y = λ . We could then plug it into Eq2 and get x2 = 2y2. As
x2 + y2 = 1, we have 3y2 = 1, or y2 = 1

3
. Thus either y = 1√

3
or y = − 1√

3
.

As we require y ≥ 0, only y = 1√
3

is possible. Also, as x2 = 2y2 = 2
3
, either

x =
√
2√
3

or x = −
√
2√
3
. Thus we get the points (

√
2√
3
,
1√
3
) and (−

√
2√
3
,
1√
3
) on

the list.
• The case of x = 0 . This you may then plug into x2 + y2 = 1, and get y2 = 1.

Thus either y = 1 or y = −1. As y ≥ 0 is a requirement, only (0, 1) is on the
list from this acse.

(b) All points of the boundary piece #1,
{x2 + y2 = 1, y = 0}

As y = 0, this means x2 = 1, so either x = 1 or x = −1. Thus we get (1, 0) , (−1, 0)
on the list.

The list of values on the candidate points:
• f(

√
2√
3
, 1√

3
) = 2

3
√
3

• f(−
√
2√
3
, 1√

3
) = 2

3
√
3

• f(0, 1) = 0
• f(1, 0) = 0
• f(−1, 0) = 0

So the global maximum value is 2
3
√
3

and the global minimum value is 0.
(2) There are two types of points we need to look for.

(a) Lagrange critical points of the original domain.
(b) All points of the boundary piece #1,

{x2 + y2 = 4, x+ y = 0}
Let g(x, y) = x2 + y2, h(x, y) = x+ y.
(a) Lagrange critical points of the original domain.
Case A The equations are

∇g(x, y) = 〈0, 0〉, g(x, y) = 4, h(x, y) ≥ 0

As∇g(x, y) = 〈2x, 2y〉, this is equal to 〈0, 0〉 precisely when x = y = 0, which
does not satisfy x2 + y2 = 4. Thus, there is no point from this case.

Case B The equations are
∇f(x, y) = λ∇g(x, y), g(x, y) = 4, h(x, y) ≥ 0

As
∇f(x, y) = 〈−2xe−x2−y2(x2 + 2y2) + 2xe−x

2−y2 ,−2ye−x2−y2(x2 + 2y2) + 4ye−x
2−y2〉

= 〈−2xe−x2−y2(x2 + 2y2 − 1),−2ye−x2−y2(x2 + 2y2 − 2)〉
We have the following system of equations.

Eq1 · · · − 2xe−x
2−y2(x2 + 2y2 − 1) = 2λx

Eq2 · · · − 2ye−x
2−y2(x2 + 2y2 − 2) = 2λy
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Eq3 · · ·x2 + y2 = 4

Eq4 · · ·x+ y ≥ 0

From Eq1 , you may want to divide by 2x and get λ = −e−x2−y2(x2 + 2y2 − 1) .
This may not be possible if x = 0 .
– The case of λ = −e−x2−y2(x2 + 2y2 − 1) . You then plug into Eq2 and

get

−2ye−x2−y2(x2 + 2y2 − 2) = −2ye−x2−y2(x2 + 2y2 − 1)

This implies that 2ye−x2−y2 = 0. Since e−x2−y2 6= 0, we get y = 0. Plugging
into Eq3 , we get x2 = 4, which means either x = 2 or x = −2. As we
need x+ y ≥ 0, the only possibility is (2, 0) .

– The case of x = 0 . You plug into Eq3 and get y2 = 4, which means
either y = 2 or y = −2. As we need x + y ≥ 0, the only possibility is
(0, 2) .

(b) All points of the boundary piece #1,

{x2 + y2 = 4, x+ y = 0}

As x+ y = 0, we have x = −y, so 2x2 = 4, or x2 = 2. Thus, either x =
√
2 (in which

case y = −
√
2) or x = −

√
2 (in which case y =

√
2). Thus we get (

√
2,−
√
2) and

(−
√
2,
√
2) on the list.

The list of values on the candidate points:
• f(2, 0) = 4e−4

• f(0, 2) = 8e−4

• f(
√
2,−
√
2) = 6e−4

• f(−
√
2,
√
2) = 6e−4

So, the global maximum value is 8e−4 and the global minimum value is 4e−4.
(3) There are two types of points we need to look for.

(a) Lagrange critical points of the original domain.
(b) Lagrange critical points of the boundary piece #1,

{x2 + y2 + z2 = 3, z = 0}
Let g(x, y, z) = x2 + y2 + z2, h(x, y, z) = z.
(a) Lagrange critical points of the original domain.
Case A The equations are

∇g(x, y, z) = 〈0, 0, 0〉, g(x, y, z) = 3, h(x, y, z) ≥ 0

As ∇g(x, y, z) = 〈2x, 2y, 2z〉, this is 〈0, 0, 0〉 precisely when x = y = z = 0,
which does not satisfy x2 + y2 + z2 = 3. Thus, there are no points from this
case.

Case B The equations are

∇f(x, y, z) = λ∇g(x, y, z), g(x, y, z) = 3, h(x, y, z) ≥ 0
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As ∇f(x, y, z) = 〈yz, xz, xy〉, we get the system of equations

Eq1 · · · yz = 2λx

Eq2 · · ·xz = 2λy

Eq3 · · ·xy = 2λz

Eq4 · · ·x2 + y2 + z2 = 3

Eq5 · · · z ≥ 0

By taking x times Eq1 , y times Eq2 , and z times Eq3 , we get

xyz = 2λx2 = 2λy2 = 2λz2.

You want to divide by 2λ and get x2 = y2 = z2 , but this may not be possible
if λ = 0 .
– The case of x2 = y2 = z2 . Then, x2 + y2 + z2 = 3 becomes 3x2 = 3, or
x2 = y2 = z2 = 1. So, each x, y, z is either 1 or −1. As z ≥ 0, z must
be 1. Therefore, there are four points on the list from this case, (1, 1, 1) ,

(1,−1, 1) , (−1, 1, 1) , (−1,−1, 1) .
– The case of λ = 0 . This means that yz = xy = xz = 0. This means that

at least two of the three numbers x, y, z are zero. Thus, either x = y = 0
or x = z = 0 or y = z = 0. Each case, using x2 + y2 + z2 = 3 and
z ≥ 0, we get the points (0, 0,

√
3) , (0,

√
3, 0) , (0,−

√
3, 0) , (

√
3, 0, 0) ,

(−
√
3, 0, 0) .

(b) Lagrange critical points of the boundary piece #1,
{x2 + y2 + z2 = 3, z = 0}

Case A1 The equations are
∇g(x, y, z) = 〈0, 0, 0〉, g(x, y, z) = 3, h(x, y, z) = 0

As ∇g(x, y, z) = 〈2x, 2y, 2z〉, this is 〈0, 0, 0〉 precisely when x = y = z = 0,
which does not satisfy x2 + y2 + z2 = 3. Thus, there are no points from this
case.

Case A2 The equations are
∇h(x, y, z) = 〈0, 0, 0〉, g(x, y, z) = 3, h(x, y, z) = 0

As ∇h(x, y, z) = 〈0, 0, 1〉 6= 〈0, 0, 0〉, there are no points from this case.
Case B The equations are
∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z), g(x, y, z) = 3, h(x, y, z) = 0

We get the system of equations

Eq1 · · · yz = 2λx

Eq2 · · ·xz = 2λy
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Eq3 · · ·xy = 2λz + µ

Eq4 · · ·x2 + y2 + z2 = 3

Eq5 · · · z = 0

As z = 0, these become simpler:

Eq1 · · · 0 = 2λx

Eq2 · · · 0 = 2λy

Eq3 · · ·xy = µ

Eq4 · · ·x2 + y2 = 3

In fact, λ = 0 and µ = xy makes the equations satis�ed as long as x2 + y2 = 3.
Thus, we see that all points (x, y, 0) with x2 + y2 = 3 are Lagrange critical
points.

The list of values on the candidate points:
• f(1, 1, 1) = 1
• f(1,−1, 1) = −1
• f(−1, 1, 1) = −1
• f(−1,−1, 1) = 1
• f(0, 0,

√
3) = 0

• f(0,
√
3, 0) = 0

• f(0,−
√
3, 0) = 0

• f(
√
3, 0, 0) = 0

• f(−
√
3, 0, 0) = 0

• For x2 + y2 = 3, f(x, y, 0) = 0.
The global max value is 1 and the global min value is −1.

�

Exercise 4. Find the global maximum and minimum values of f on the given domain.
(1) f(x, y) = x3 − 12x+ y3 − 12y on the domain

D = {(x, y) | (x+ 2)2 + (y + 2)2 ≤ 13, x ≥ −5}
(2) f(x, y) = x+ y on the domain

D = {(x, y) | 0 ≤ x ≤ 1, ex2 ≤ y ≤ ex}
(3) f(x, y, z) = x4 + y + z2 on the domain

D = {(x, y, z) | x2 + y2 + z2 ≤ 1

4
, x ≥ 0}

(4) f(x, y, z) = xz + yz − xy on the domain
D = {(x, y, z) | z2 ≥ x2 + y2, z2 ≤ 4}

Solution.
(1) There are four types of points we need to look for.

(a) Critical points of the original domain.
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(b) Lagrange critical points of the boundary piece #1,

{(x+ 2)2 + (y + 2)2 = 13, x ≥ −5}

(c) Lagrange critical points of the boundary piece #2,

{(x+ 2)2 + (y + 2)2 ≤ 13, x = −5}

(d) All points of the boundary piece #3,

{(x+ 2)2 + (y + 2)2 = 13, x = −5}

Let g(x, y) = (x+ 2)2 + (y + 2)2, h(x, y) = x.
(a) Critical points of the original domain.

The equations are

∇f(x, y) = 〈0, 0〉, g(x, y) ≤ 13, h(x, y) ≥ −5

As∇f(x, y) = 〈3x2− 12, 3y2− 12〉, it is equal to 〈0, 0〉 precisely when 3x2− 12 = 0
and 3y2 − 12 = 0. This means x2 = 4 and y2 = 4, so both x and y are either 2 or
−2. All these points satisfy x ≥ −5, so we get four points on the list, (−2,−2) ,

(−2, 2) , (2,−2) , (2, 2) .
(b) Lagrange critical points of the boundary piece #1,

{(x+ 2)2 + (y + 2)2 = 13, x ≥ −5}

Case A The equations are

∇g(x, y) = 〈0, 0〉, g(x, y) = 13, h(x, y) ≥ −5

As∇g(x, y) = 〈2(x+2), 2(y+2)〉, this is equal to 〈0, 0〉 precisely when x+2 =
y+2 = 0. This does not satisfy (x+2)2+(y+2)2 = 13, so there are no points
in this case.

Case B The equations are

∇f(x, y) = λ∇g(x, y), g(x, y) = 13, h(x, y) ≥ −5

We have the system of equations

Eq1 · · · 3x2 − 12 = 2λ(x+ 2)

Eq2 · · · 3y2 − 12 = 2λ(y + 2)

Eq3 · · · (x+ 2)2 + (y + 2)2 = 13

Eq4 · · ·x ≥ −5

Note that Eq1 is 3(x−2)(x+2) = 3(x2−4) = 2λ(x+2), so we want to divide

by 2(x + 2) on both sides and get λ =
3

2
(x− 2) . This may not be possible if

x = −2 .
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– The case of λ =
3

2
(x− 2) . Plugging into Eq2 , we get

3(y − 2)(y + 2) = 3y2 − 12 = 3(x− 2)(y + 2)

Thus, 3(x− y)(y + 2) = 0. Therefore, either x = y or y = −2 .
∗ The case of x = y . Plugging into Eq3 , we get 2(x + 2)2 = 13, so
x + 2 = ±

√
13√
2

, so x is either −2 +
√
13√
2

or −2 −
√
13√
2

. Both cases satisfy

x ≥ −5, so we get two points on the list, (−2 +
√
13√
2
,−2 +

√
13√
2
) ,

(−2−
√
13√
2
,−2−

√
13√
2
) .

∗ The case of y = −2 . Plugging into Eq3 , we get (x + 2)2 = 13, so
x + 2 = ±

√
13, so either x = −2 +

√
13 or x = −2 −

√
13. Note that

−2 +
√
13 ≥ −5 while −2 −

√
13 < −5, so we only get one point,

(−2 +
√
13,−2) .

– The case of x = −2 . Plugging into Eq3 , we get (y + 2)2 = 13, so either

y = −2+
√
13 or y = −2−

√
13. Thus we get two points, (−2,−2 +

√
13) ,

(−2,−2−
√
13) .

(c) Lagrange critical points of the boundary piece #2,

{(x+ 2)2 + (y + 2)2 ≤ 13, x = −5}
Case A The equations are

∇h(x, y) = 〈0, 0〉, g(x, y) ≤ 13, h(x, y) = −5
As∇h(x, y) = 〈1, 0〉 6= 〈0, 0〉, there are no points in this case.

Case B The equations are

∇f(x, y) = λ∇h(x, y), g(x, y) ≤ 13, h(x, y) = −5
This means 〈3x2 − 12, 3y2 − 12〉 = λ〈1, 0〉 = 〈λ, 0〉, so 3y2 − 12 = 0, or
y2 = 4. This means y = 2 or y = −2. Note that (x, y) = (−5,−2) satis�es
(x + 2)2 + (y + 2)2 ≤ 13 while (x, y) = (−5, 2) does not, so we get one point
(−5,−2) on the list.

(d) All points of the boundary piece #3,

{(x+ 2)2 + (y + 2)2 = 13, x = −5}
As x = −5, we get (y + 2)2 = 13 − 9 = 4, so y + 2 is either 2 or −2, which means
y = 0 or y = −4. So we get the points (−5, 0) and (−5,−4) on the list.

The list of values on the candidate points:
• f(−2,−2) = 32
• f(−2, 2) = 0
• f(2,−2) = 0
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• f(2, 2) = −32
• f(−2 +

√
13√
2
,−2 +

√
13√
2
) = −46 + 13

√
13

• f(−2−
√
13√
2
,−2−

√
13√
2
) = −46− 13

√
13

• f(−2 +
√
13,−2) = −46 + 13

√
13

• f(−2,−2 +
√
13) = −46 + 13

√
13

• f(−2,−2−
√
13) = −46− 13

√
13

• f(−5,−2) = −49
• f(−5, 0) = −65
• f(−5,−4) = −81

The global max value is 32 and the global min value is −46− 13
√
13.

(2) There are 10 types of points we need to look for.
(a) Critical points of the original domain.
(b) Lagrange critical points of the boundary piece #1,

{x = 0, ex2 ≤ y ≤ ex}

(c) Lagrange critical points of the boundary piece #2,

{x = 1, ex2 ≤ y ≤ ex}

(d) Lagrange critical points of the boundary piece #3,

{0 ≤ x ≤ 1, y = ex2}

(e) Lagrange critical points of the boundary piece #4,

{0 ≤ x ≤ 1, y = ex}

(f) All points of the boundary piece #5,

{x = 0, y = ex2}

(g) All points of the boundary piece #6,

{x = 0, y = ex}

(h) All points of the boundary piece #7,

{x = 1, y = ex2}

(i) All points of the boundary piece #8,

{x = 1, y = ex}

(j) All points of the boundary piece #9,

{0 ≤ x ≤ 1, y = ex2 = ex}

(Here we get this boundary piece considered, because it is not clear at �rst sight
whether ex2 = ex is a bogus empty condition or not)

Let g(x, y) = x, h(x, y) = y − ex2, i(x, y) = y − ex, so that the original domain is
expressed using g(x, y) ≥ 0, g(x, y) ≤ 1, h(x, y) ≥ 0, i(x, y) ≤ 0.
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(a) Critical points of the original domain.
The equations are

∇f(x, y) = 〈0, 0〉, 0 ≤ x ≤ 1, ex2 ≤ y ≤ ex

As ∇f(x, y) = 〈1, 1〉 6= 〈0, 0〉, there are no points in this case.
(b) Lagrange critical points of the boundary piece #1,

{x = 0, ex2 ≤ y ≤ ex}

Case A The equations are

∇g(x, y) = 〈0, 0〉, x = 0, ex2 ≤ y ≤ ex

As ∇g(x, y) = 〈1, 0〉 6= 〈0, 0〉, there are no points in this case.
Case B The equations are

∇f(x, y) = λ∇g(x, y), x = 0, ex2 ≤ y ≤ ex

We have 〈1, 1〉 = λ〈1, 0〉 = 〈λ, 0〉, which is impossible, so there are no points
in this case.

(c) Lagrange critical points of the boundary piece #2,

{x = 1, ex2 ≤ y ≤ ex}

Case A The equations are

∇g(x, y) = 〈0, 0〉, x = 1, ex2 ≤ y ≤ ex

As ∇g(x, y) = 〈1, 0〉 6= 〈0, 0〉, there are no points in this case.
Case B The equations are

∇f(x, y) = λ∇g(x, y), x = 1, ex2 ≤ y ≤ ex

We have 〈1, 1〉 = λ〈1, 0〉 = 〈λ, 0〉, which is impossible, so there are no points
in this case.

(d) Lagrange critical points of the boundary piece #3,

{0 ≤ x ≤ 1, y = ex2}

Case A The equations are

∇h(x, y) = 〈0, 0〉, 0 ≤ x ≤ 1, y = ex2

As ∇h(x, y) = 〈−2ex, 1〉 6= 〈0, 0〉, there are no points in this case.
Case B The equations are

∇f(x, y) = λ∇h(x, y), 0 ≤ x ≤ 1, y = ex2

We have
〈1, 1〉 = λ〈−2ex, 1〉 = 〈−2eλx, λ〉

Thus, λ = 1 and −2ex = 1, which means x = − 1
2e

. As we want 0 ≤ x ≤ 1,
this is impossible, yielding no points in this case.

(e) Lagrange critical points of the boundary piece #4,

{0 ≤ x ≤ 1, y = ex}
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Case A The equations are

∇i(x, y) = 〈0, 0〉, 0 ≤ x ≤ 1, y = ex

As ∇i(x, y) = 〈−ex, 1〉 6= 〈0, 0〉, there are no points in this case.
Case B The equations are

∇f(x, y) = λ∇i(x, y), 0 ≤ x ≤ 1, y = ex

We have 〈1, 1〉 = λ〈−ex, 1〉 = 〈−λex, λ〉. Thus, λ = 1 and −ex = 1, which is
impossible as ex is always positive. So, there are no points in this case.

(f) All points of the boundary piece #5,

{x = 0, y = ex2}

This is the point (0, 0) .
(g) All points of the boundary piece #6,

{x = 0, y = ex}

This is the point (0, 1) .
(h) All points of the boundary piece #7,

{x = 1, y = ex2}

This is the point (1, e)

(i) All points of the boundary piece #8,

{x = 1, y = ex}

This is the point (1, e) .
(j) All points of the boundary piece #9,

{0 ≤ x ≤ 1, y = ex2 = ex}

This means ex2 = ex, but ex2 ≤ ex for all 0 ≤ x ≤ 1, and this meets when x = 1. So
this means x = 1 and y = e, so again the point (1, e) .

The list of values on the candidate points:
• f(0, 0) = 0
• f(0, 1) = 1
• f(1, e) = 1 + e

The global max value is e+ 1 and the global min value is 0.
(3) There are four types of points we need to look for.

(a) Critical points of the original domain.
(b) Lagrange critical points of the boundary piece #1,

{x2 + y2 + z2 =
1

4
, x ≥ 0}

(c) Lagrange critical points of the boundary piece #2,

{x2 + y2 + z2 ≤ 1

4
, x = 0}
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(d) Lagrange critical points of the boundary piece #3,

{x2 + y2 + z2 =
1

4
, x = 0}

Let g(x, y, z) = x2 + y2 + z2, h(x, y, z) = x.
(a) Critical points of the original domain.

The equations are

∇f(x, y, z) = 〈0, 0, 0〉, g(x, y, z) ≤ 1

4
, h(x, y, z) ≥ 0

As ∇f(x, y, z) = 〈4x3, 1, 2z〉 6= 〈0, 0, 0〉, there are no points in this case.
(b) Lagrange critical points of the boundary piece #1,

{x2 + y2 + z2 =
1

4
, x ≥ 0}

Case A The equations are

∇g(x, y, z) = 〈0, 0, 0〉, g(x, y, z) =
1

4
, h(x, y, z) ≥ 0

As ∇g(x, y, z) = 〈2x, 2y, 2z〉, this is 〈0, 0, 0〉 precisely when x = y = z = 0,
which does not satisfy x2 + y2 + z2 = 1

4
. Thus there are no points in this case.

Case B The equations are

∇f(x, y, z) = λ∇g(x, y, z), g(x, y, z) =
1

4
, h(x, y, z) ≥ 0

We get the system of equations

Eq1 · · · 4x3 = 2λx

Eq2 · · · 1 = 2λy

Eq3 · · · 2z = 2λz

Eq4 · · ·x2 + y2 + z2 =
1

4

Eq5 · · ·x ≥ 0

We want to divide Eq3 by 2z and get λ = 0 . This may not be possible if
z = 0 .
– The case of λ = 0 . This is impossible because Eq2 becomes 1 = 0. So

there are no points in this case.
– The case of z = 0 . Then the equations become

Eq1 · · · 4x3 = 2λx

Eq2 · · · 1 = 2λy

Eq4 · · ·x2 + y2 =
1

4

Eq5 · · ·x ≥ 0
48



We want to divide Eq1 by 2x and get λ = 2x2 . This may not be possible
if x = 0 .
∗ The case of λ = 2x2 . In this case Eq2 becomes 1 = 4x2y, so y > 0. In

particular, we may divide by 4y and get x2 = 1
4y

. As x2 + y2 = 1
4
, we get

1
4y

+ y2 = 1
4
.

How can this ever happen? If y ≥ 1, then 1
4y
+y2 ≥ y2 ≥ 1, so this cannot

be equal to 1
4
. On the other hand, if 0 < y ≤ 1, then 1

4y
+ y2 > 1

4y
≥ 1

4
, so

again this cannot be equal to 1
4
. So, this equality can never be satis�ed,

and there are no points in this case.
∗ The case of x = 0 . This means x = z = 0, so y2 = 1

4
, so either y = 1

2
or

y = −1
2
. So we have two points on the list, (0,

1

2
, 0) and (0,−1

2
, 0) .

(c) Lagrange critical points of the boundary piece #2,

{x2 + y2 + z2 ≤ 1

4
, x = 0}

Case A The equations are

∇h(x, y, z) = 〈0, 0, 0〉, g(x, y, z) ≤ 1

4
, h(x, y, z) = 0

As ∇h(x, y, z) = 〈1, 0, 0〉 6= 〈0, 0, 0〉, there are no points in this case.
Case B The equations are

∇f(x, y, z) = λ∇h(x, y, z), g(x, y, z) ≤ 1

4
, h(x, y, z) = 0

We have 〈4x3, 1, 2z〉 = λ〈1, 0, 0〉 = 〈λ, 0, 0〉, which is impossible because of the
second component. So there are no points in this case.

(d) Lagrange critical points of the boundary piece #3,

{x2 + y2 + z2 =
1

4
, x = 0}

Case A1 The equations are

∇g(x, y, z) = 〈0, 0, 0〉, g(x, y, z) =
1

4
, h(x, y, z) = 0

As ∇g(x, y, z) = 〈2x, 2y, 2z〉, this is 〈0, 0, 0〉 precisely when x = y = z = 0,
which does not satisfy x2 + y2 + z2 = 1

4
. Thus there are no points in this case.

Case A2 The equations are

∇h(x, y, z) = 〈0, 0, 0〉, g(x, y, z) =
1

4
, h(x, y, z) = 0

As ∇h(x, y, z) = 〈1, 0, 0〉 6= 〈0, 0, 0〉, there are no points in this case.
Case B The equations are

∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z), g(x, y, z) =
1

4
, h(x, y, z) = 0
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We get the system of equations

Eq1 · · · 4x3 = 2λx+ µ

Eq2 · · · 1 = 2λy

Eq3 · · · 2z = 2λz

Eq4 · · ·x2 + y2 + z2 =
1

4

Eq5 · · ·x = 0

As x = 0, these simplify into

Eq1 · · · 0 = µ

Eq2 · · · 1 = 2λy

Eq3 · · · 2z = 2λz

Eq4 · · · y2 + z2 =
1

4

We want to divide Eq3 by 2z and get λ = 1 , which may not be possible if
z = 0 .
– The case of λ = 1 . In this case Eq2 says 2y = 1, or y = 1

2
. Then by

Eq4 , z2 = 0, so z = 0. So again we get the point (0,
1

2
, 0) .

– The case of z = 0 . Then Eq4 becomes y2 = 1
4
, so we get two points on

the list, (0,
1

2
, 0) , (0,−1

2
, 0) .

The list of values on the candidate points:
• f(0, 1

2
, 0) = 1

2

• f(0,−1
2
, 0) = −1

2

So the global maximum value is 1
2

and the global minimum value is −1
2
.

(4) There are four types of points we need to look for.
(a) Critical points of the original domain.
(b) Lagrange critical points of the boundary piece #1,

{z2 = x2 + y2, z2 ≤ 4}

(c) Lagrange critical points of the boundary piece #2,

{z2 ≥ x2 + y2, z2 = 4}

(d) Lagrange critical points of the boundary piece #3,

{z2 = x2 + y2, z2 = 4}

Let g(x, y, z) = z2 − x2 − y2 and h(x, y, z) = z2.
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(a) Critical points of the original domain.
The equations are

∇f(x, y, z) = 〈0, 0, 0〉, g(x, y, z) ≥ 0, h(x, y, z) ≤ 4

As ∇f(x, y, z) = 〈z − y, z − x, x + y〉, this is 〈0, 0, 0〉 if z − y = 0, z − x = 0 and
x + y = 0. This means x = y = z and x + y = 0. So, x = y = z = 0. This point
satis�es the domain inequalities, so we get a point on the list (0, 0, 0) .

(b) Lagrange critical points of the boundary piece #1,

{z2 = x2 + y2, z2 ≤ 4}
Case A The equations are

∇g(x, y, z) = 〈0, 0, 0〉, g(x, y, z) = 0, h(x, y, z) ≤ 4

As ∇g(x, y, z) = 〈−2x,−2y, 2z〉, it is 〈0, 0, 0〉 if x = y = z = 0. This satis�es
the domain equations, so (0, 0, 0) is a point on the list.

Case B The equations are

∇f(x, y, z) = λ∇g(x, y, z), g(x, y, z) = 0, h(x, y, z) ≤ 4

We get the system of equations

Eq1 · · · z − y = −2λx

Eq2 · · · z − x = −2λy

Eq3 · · ·x+ y = 2λz

Eq4 · · · z2 = x2 + y2

Eq5 · · · z2 ≤ 4

We compute Eq1 − Eq2 and get

x− y = −2λ(x− y)

We want to divide this by x − y and get λ = −1

2
, which may not be possible

if x = y .

– The case of λ = −1

2
. By plugging into the equations we get

Eq1 · · · z − y = x

Eq2 · · · z − x = y

Eq3 · · ·x+ y = −z

Eq4 · · · z2 = x2 + y2

Eq5 · · · z2 ≤ 4
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So on one hand Eq1 says z = x + y but on the other hand Eq3 says
z = −x − y. So z = x + y = 0. This together with z2 = x2 + y2 implies
that x = y = z = 0. So we get (0, 0, 0) on the list from this case.

– The case of x = y . Plugging into the equations we get

Eq1 · · · z − x = −2λx

Eq3 · · · 2x = 2λz

Eq4 · · · z2 = 2x2

Eq5 · · · z2 ≤ 4

So Eq1 says z = (1−2λ)x and Eq3 says x = λz. Thus z = (1−2λ)x =

λ(1− 2λ)z. This is possible either when z = 0 or λ(1− 2λ) = 1 .
∗ The case of z = 0 . This implies that x2 = 0, so x = y = z = 0, so we

again get the point (0, 0, 0) .

∗ The case of λ(1− 2λ) = 1 . This is −2λ2 + λ = 1, or 2λ2 − λ + 1 = 0,
but this has no real roots, so this case has no points.

(c) Lagrange critical points of the boundary piece #2,

{z2 ≥ x2 + y2, z2 = 4}
Case A The equations are

∇h(x, y, z) = 〈0, 0, 0〉, g(x, y, z) ≥ 0, h(x, y, z) = 4

As ∇h(x, y, z) = 〈0, 0, 2z〉, it is 〈0, 0, 0〉 exactly when z = 0. This does not
satisfy z2 = 4, so there are no points in this case.

Case B The equations are

∇f(x, y, z) = λ∇h(x, y, z), g(x, y, z) ≥ 0, h(x, y, z) = 4

The vector equations says that 〈z− y, z− x, x+ y〉 = λ〈0, 0, 2z〉 = 〈0, 0, 2λz〉.
Thus z − y = 0 and z − x = 0, or x = y = z. As z2 = 4, x2 = y2 = 4, so this
violates z2 ≥ x2 + y2, so there are no points from this case.

(d) Lagrange critical points of the boundary piece #3,

{z2 = x2 + y2, z2 = 4}
Case A1 The equations are

∇g(x, y, z) = 〈0, 0, 0〉, g(x, y, z) = 0, h(x, y, z) = 4

As ∇g(x, y, z) = 〈−2x,−2y, 2z〉, it is 〈0, 0, 0〉 if x = y = z = 0. This does not
satisfty the domain equations, so there are no points from this case.

Case A2 The equations are

∇h(x, y, z) = 〈0, 0, 0〉, g(x, y, z) = 0, h(x, y, z) = 4

As ∇h(x, y, z) = 〈0, 0, 2z〉, it is 〈0, 0, 0〉 exactly when z = 0. This does not
satisfy z2 = 4, so there are no points in this case.
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Case B The equations are

∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z), g(x, y, z) = 0, h(x, y, z) = 4

We get the system of equations

Eq1 · · · z − y = −2λx

Eq2 · · · z − x = −2λy

Eq3 · · ·x+ y = 2λz + 2µz

Eq4 · · · z2 = x2 + y2

Eq5 · · · z2 = 4

We compute Eq1 − Eq2 and get

x− y = −2λ(x− y)

So we want to divide by (x− y) and get λ = −1

2
, which may not be possible

if x = y .

– The case of λ = −1

2
. Then Eq1 says z − y = x, or z = x + y. As

z2 = x2+ y2, this means (x+ y)2 = x2+ y2, or 2xy = 0, so either x = 0 or
y = 0. As from Eq5 , either z = 2 or z = −2, so we get points (0, 2, 2) ,

(0,−2,−2) , (2, 0, 2) , (−2, 0,−2) .
– The case of x = y . Plugging into Eq4 you get z2 = 2x2. As z2 = 4,
x2 = 2, so either x =

√
2 or x = −

√
2. As z = 2 or z = −2, we get the

points (
√
2,
√
2, 2) , (

√
2,
√
2,−2) , (−

√
2,−
√
2, 2) , (−

√
2,−
√
2,−2) ,

The list of values on the candidate points:
• f(0, 0, 0) = 0
• f(0, 2, 2) = 4
• f(0,−2,−2) = 4
• f(2, 0, 2) = 4
• f(−2, 0,−2) = 4
• f(
√
2,
√
2, 2) = 4

√
2− 2

• f(
√
2,
√
2,−2) = −4

√
2− 2

• f(−
√
2,−
√
2, 2) = −4

√
2− 2

• f(−
√
2,−
√
2,−2) = 4

√
2− 2

So the global maximum value is 4 and the global minimum value is −4
√
2− 2.
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20. Global minima of coercive functions

Exercise 1. Determine whether the following domain is bounded or not.
(1) {(x, y) | x2 + y2 ≤ 1}
(2) {(x, y) | x+ y = 0}
(3) {(x, y) | x3 + y3 ≤ 1}
(4) {(x, y) | x4 + y2 ≤ 1}
(5) {(x, y) | x2 + y4 + x ≤ 1, y ≥ 0}
(6) {(x, y, z) | x2 + y2 + z ≤ 1}
(7) {(x, y, z) | x2 + y4 ≤ z2}
(8) {(x, y, z) | x2 + y2 + z2 ≤ 2x+ 2y + 2z, z ≥ 0}

Solution. (1) Bounded.
(2) Not bounded (x can go to +∞ while y goes to −∞, for example).
(3) Not bounded (x can go to −∞, for example).
(4) Bounded.
(5) Bounded. This is a bit subtle, so let’s explain why.

Note that x2 + y4 + x ≤ 1 implies that x2 + x ≤ x2 + y4 + x ≤ 1, and x2 + x ≤ 1
implies that x is bounded (it lies in between the two roots of the equation x2 + x = 1).
Now y4 ≤ 1− (x2 + x), so in particular y4 is also smaller than some �xed �nite number.
This implies that y is bounded too.

(6) Not bounded (z can go to −∞, for example)
(7) Not bounded (z can go to +∞, for example)
(8) Bounded. This is because x2 + y2 + z2 ≤ 2x + 2y + 2z is the same as (x2 − 2x) +

(y2 − 2y) + (z2 − 2z) ≤ 0, or (x2 − 2x + 1) + (y2 − 2y + 1) + (z2 − 2z + 1) ≤ 3, or
(x− 1)2 + (y − 1)2 + (z − 1)2 ≤ 3, which makes the domain bounded.

�

Exercise 2. Determine whether the following function is a coercive function or not.
(1) f(x) = x2

(2) f(x) = ex

(3) f(x) = x2 − 1
(4) f(x, y) = x4 + y4

(5) f(x, y) = ex
2+y2

(6) f(x, y) = ex
2−y2

(7) f(x, y, z) = x2 + y2 + z2 + sin2(x)

Proof.
(1) Note that {x2 ≤ k} is empty if k < 0 and is {−

√
k ≤ x ≤

√
k} if k ≥ 0, so f is coercive.

(2) The domain {ex ≤ k} is {x ≤ log(k)}, which is in general not bounded. So f is not
coercive.

(3) Note that {x2 − 1 ≤ k} is the same as {x2 ≤ k}. So f(x) = x2 being coercive implies
f(x) = x2 − 1 is also coercive.

(4) The domain {x4 + y4 ≤ k} is empty if k < 0 and would imply that x4, y4 ≤ x4 + y4 ≤ k,
which means, if k ≥ 0, − 4

√
k ≤ x, y ≤ 4

√
k, which is bounded. So f is coercive.

(5) The domain {ex2+y2 ≤ k} is the same as {x2+ y2 ≤ log(k)}, which is bounded as x2+ y2
is coercive. Thus f is coercive.
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(6) The domain {ex2−y2 ≤ k} is the same as {x2 − y2 ≤ log(k)}, which is in general not
bounded. So f is not coercive.

(7) We know x2 + y2 + z2 is coercive. As f(x, y, z) ≥ x2 + y2 + z2, f is coercive as well.
�

Exercise 3. Determine whether f has a global maximum and/or minimum on the domain, and
if they exist, �nd the values.

(1) f(x, y) = x2 + y2, on the domain {(x, y) | xy ≥ 1}
(2) f(x, y) = x4 + y4 on the domain {(x, y) | x2 − y2 ≥ 1}
(3) f(x, y, z) = x2 + y2 + z2 on the domain {(x, y, z) | x− y = 1, y2 − z2 = 1}
(4) f(x, y, z) = x2 + 2y2 + 3z2 on the domain {(x, y, z) | x+ y + z = 1, x− y + 2z = 2}
(5) f(x, y, z) = x2 + y2 + z2 on the domain {(x, y, z) | 2x+ y+2z = 9, 5x+5y+7z = 29}
(6) f(x, y, z) = x2 + y2 + z2 on the domain {(x, y, z) | z2 = x2 + y2, x+ y − z + 1 = 0}
(7) f(x, y, z) = 2x2+2y2+z2+(x−y)2 on the domain {(x, y, z) | xz+yz ≥ 4, x2−y2 ≥ 0}

Solution.
(1) First we see that the domain is not bounded. On the other hand f(x, y) is coercive. So we

know automatically that the global maximum does not exist.
To obtain the global minimum, we do the usual process: look for the following types of

points (the domain has one inequality):
• Critical points of the original domain.
• Lagrange critical points of the boundary piece #1.

{(x, y) | xy = 1}

Let g(x, y) = xy so that the original domain equation is g(x, y) ≥ 1.
• Critical points of the original domain.

This is when ∇f(x, y) = 〈0, 0〉. As ∇f(x, y) = 〈2x, 2y〉, this happens only when
x = y = 0. This does not satisfy xy ≥ 1, so we don’t get any point from this case.
• Lagrange critical points of the boundary piece #1.

{(x, y) | xy = 1}

Case A ∇g(x, y) = 〈0, 0〉
As ∇g(x, y) = 〈y, x〉, this is equal to 〈0, 0〉 only if x = y = 0, which does not
satisfy xy = 1. Thus we get no points from this case.

Case B ∇f(x, y) = λ∇g(x, y)
This means 〈2x, 2y〉 = λ〈y, x〉 = 〈λy, λx〉. Thus we get the system of equations

Eq1 2x = λy

Eq2 2y = λx

Eq3 xy = 1

Multiplying Eq1 , Eq2 , we get

4xy = λ2xy

Since xy = 1, we see 4 = λ2. Thus, either λ = 2 or λ = −2 .
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∗ The case of λ = 2 .
Then Eq1 says 2x = 2y, or x = y. From Eq3 , xy = 1 becomes x2 = 1,
so either x = y = 1 or x = y = −1. Thus we get two points, (1, 1) and

(−1,−1) .
∗ The case of λ = −2 .

Then Eq1 says 2x = −2y, or x = −y. From Eq3 , xy = 1 becomes
−x2 = 1, which is impossible. Thus we get no points from this case.

The list of values on the candidate points:
• f(1, 1) = 2
• f(−1,−1) = 2

Thus the global minimum value is 2 and the global maximum does not exist.
(2) We see that the domain is not bounded, but f(x, y) is coercive. Thus we know automati-

cally that the global maximum does not exist.
We look for the following types of points:
• Critical points of the original domain.
• Lagrange critical points of the boundary piece #1.

{(x, y) | x2 − y2 = 1}
Let g(x, y) = x2 − y2 so that the original domain equation is g(x, y) ≥ 1.
• Crticial points of the original domain.

This is when ∇f(x, y) = 〈0, 0〉. As ∇f(x, y) = 〈4x3, 4y3〉, this happens only when
x = y = 0. This does not satisfy x2 − y2 ≥ 1. Thus we get no points from this case.
• Lagrange critical points of the boundary piece #1.

{(x, y) | x2 − y2 = 1}
Case A ∇g(x, y) = 〈0, 0〉

As ∇f(x, y) = 〈2x,−2y〉, this is equal to 〈0, 0〉 precisely if x = y = 0, which
does not satisfy x2 − y2 = 1.

Case B ∇f(x, y) = λ∇g(x, y)
This means 〈4x3, 4y3〉 = λ〈2x,−2y〉. We get a system of equations

Eq1 4x3 = 2λx

Eq2 4y3 = −2λy

Eq3 x2 − y2 = 1

We want to divide Eq1 by 2x and obtain λ = 2x2 . This may not be possible
if x = 0 .
∗ The case of λ = 2x2 .

Applying the same logic to Eq2 , we have either λ = −2y2 or y = 0 .

· The case of λ = −2y2 .
Then 2x2 = −2y2. As x2 ≥ 0 and −y2 ≤ 0, this implies that x = y = 0.
This is impossible as we need x2 − y2 = 1, so we get no points from this
case.
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· The case of y = 0 .
By Eq3 , we get x2 = 1, so either x = 1 or x = −1. Thus we get two
points, (1, 0) , (−1, 0) .

∗ The case of x = 0 .
By Eq3 , we get −y2 = 1, which is impossible.

The list of values on the candidate points:
• f(1, 0) = 1
• f(−1, 0) = 1

Thus the global minimum value is 1, and the global maximum does not exist.
(3) We see that the domain is not bounded (z can be any number, for example), but f(x, y, z)

is coercive. Thus we know automatically that the global maximum does not exist.
We need to look for the Lagrange critical points of the original domain. Let g(x, y, z) =

x − y and h(x, y, z) = y2 − z2 so that the original domain equations are g(x, y, z) = 1,
h(x, y, z) = 1.
• Lagrange critical points of the original domain.

Case A1 ∇g(x, y, z) = 〈0, 0, 0〉
As ∇g(x, y, z) = 〈1,−1, 0〉, this is never zero.

Case A2 ∇h(x, y, z) = 〈0, 0, 0〉
As ∇h(x, y, z) = 〈0, 2y,−2z〉, this is zero exactly when y = z = 0, which is
impossible as y2 − z2 = 1.

Case B ∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z)
As∇f(x, y, z) = 〈2x, 2y, 2z〉, we get a system of equations

Eq1 2x = λ

Eq2 2y = −λ+ 2µy

Eq3 2z = −2µz

Eq4 x− y = 1

Eq5 y2 − z2 = 1

From Eq3 , we want to divide by −2z and get µ = −1 , or it is impossible if
z = 0 .
∗ The case of µ = −1 .

From Eq2 , we get 2y = −λ − 2y, so 4y = −λ. Thus x = −2y. From
x − y = 1, we get −3y = 1, so y = −1

3
. However from Eq5 we have

1
9
− z2 = 1, so z2 = −8

9
, which is impossible.

∗ The case of z = 0 .
From Eq5 , y2 = 1, so either y = 1 or y = −1. From x − y = 1, we get
two points, (0,−1, 0) and (2, 1, 0) .

The list of values on the candidate points:
• f(0,−1, 0) = 1
• f(2, 1, 0) = 5
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Thus the global minimum value is 1 and the global maximum does not exist.
(4) We see that the domain is not bounded (z can be any number, for example), but f(x, y, z)

is coercive (it is ≥ x2 + y2 + z2). Thus we know automatically that the global maximum
does not exist.

We need to look for the Lagrange critical points of the original domain. Let g(x, y, z) =
x+ y+ z and h(x, y, z) = x− y+2z so that the domain equations are g(x, y, z) = 1 and
h(x, y, z) = 2.
• Lagrange critical points of the original domain.

Case A1 ∇g(x, y, z) = 〈0, 0, 0〉
As ∇g(x, y, z) = 〈1, 1, 1〉, it is never zero.

Case A2 ∇h(x, y, z) = 〈0, 0, 0〉
As ∇h(x, y, z) = 〈1,−1, 2〉, it is never zero.

Case B ∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z)
As ∇f(x, y, z) = 〈2x, 4y, 6z〉, we get a system of equations

Eq1 2x = λ+ µ

Eq2 4y = λ− µ

Eq3 6z = λ+ 2µ

Eq4 x+ y + z = 1

Eq5 x− y + 2z = 2

Taking 3× Eq1 − Eq2 − 2× Eq3 , we get

6x− 4y − 12z = 3(λ+ µ)− (λ− µ)− 2(λ+ 2µ) = 0

Thus 4y = 6x− 12z, so y = 3
2
x− 3z. Then Eq4 , Eq5 become

5

2
x− 2z = 1

−1

2
x+ 5z = 2 ⇒ −5

2
x+ 25z = 10

Thus 23z = 11, so z = 11
23

. Also as −1
2
x+ 5z = 2, x = 10z − 4 = 110

23
− 4 = 18

23
.

Thus y = 3
2
x− 3z = 27

23
− 33

23
= − 6

23
. Thus we get the point (

18

23
,− 6

23
,
11

23
) .

The list of values on the candidate points:
• f(18

23
,− 6

23
, 11
23
) = 182+2·62+3·112

232
= 33

23

Thus the global minimum value is 33
23

and the global maximum does not exist.
(5) We see that the domain is not bounded (z can be any number, for example), but f(x, y, z)

is coercive. Thus we know automatically that the global maximum does not exist.
We look for the Lagrange critical points of the original domain. Let g(x, y, z) = 2x +

y + 2z and h(x, y, z) = 5x + 5y + 7z, so the domain equations are g(x, y, z) = 9 and
h(x, y, z) = 29.
• Lagrange critical points of the original domain.

Case A1 ∇g(x, y, z) = 〈0, 0, 0〉
As ∇g(x, y, z) = 〈2, 1, 2〉, it is never zero.
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Case A2 ∇h(x, y, z) = 〈0, 0, 0〉
As ∇h(x, y, z) = 〈5, 5, 7〉, it is never zero.

Case B ∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z)
As∇f(x, y, z) = 〈2x, 2y, 2z〉, we get a system of equations

Eq1 2x = 2λ+ 5µ

Eq2 2y = λ+ 5µ

Eq3 2z = 2λ+ 7µ

Eq4 2x+ y + 2z = 9

Eq5 5x+ 5y + 7z = 29

Taking Eq1 − Eq2 , we get 2x− 2y = λ. Taking Eq3 − Eq1 , we get 2z −
2x = 2µ, or z−x = µ. So Eq2 says 2y = (2x−2y)+5(z−x) = −3x−2y+5z,
or 3x + 4y − 5z = 0. Taking Eq5 − Eq4 , we get 3x + 4y + 5z = 20. So
10z = 20, or z = 2. Thus we get

Eq4 2x+ y = 5

Eq5 5x+ 5y = 15 ⇒ x+ y = 3

So x = 2 and y = 1, and we get the piont (2, 1, 2) .
The list of values on the candidate points:
• f(2, 1, 2) = 9

Thus the global minimum value is 9 and the global maximum does not exist.
(6) Let’s �rst see whether the domain is bounded or not, which is unclear at �rst sight. Plug-

ging z = x+ y + 1 into z2 = x2 + y2, we get

x2 + y2 + 1 + 2xy + 2x+ 2y = x2 + y2

or
2xy + 2x+ 2y + 1 = 0

This means 2xy + 2x + 2y + 2 = 1, or 2(x + 1)(y + 1) = 1. So de�nitely x can be any
number 6== −1, which makes the domain unbounded. On the other hand, f(x, y, z) is
coercive. Thus we know automatically that the global maximum does not exist.

We look for the Lagrange critical points of the original domain. Let g(x, y, z) = x2 +
y2− z2 and h(x, y, z) = x+ y− z+1 so that the domain equations are g(x, y, z) = 0 and
h(x, y, z) = 0.
• Lagrange critical points of the original domain.

Case A1 ∇g(x, y, z) = 〈0, 0, 0〉
As ∇g(x, y, z) = 〈2x, 2y,−2z〉, it is equal to zero precisely if x = y = z = 0.
However this does not satisfy x+ y − z + 1 = 0, so there is no point from this
case.

Case A2 ∇h(x, y, z) = 〈0, 0, 0〉
As ∇h(x, y, z) = 〈1, 1,−1〉, it is never zero.
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Case B ∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z)
As∇f(x, y, z) = 〈2x, 2y, 2z〉, we get a system of equations

Eq1 2x = 2λx+ µ

Eq2 2y = 2λy + µ

Eq3 2z = −2λz − µ

Eq4 x2 + y2 − z2 = 0

Eq5 x+ y − z + 1 = 0

Taking Eq1 − Eq2 , we get 2(x − y) = 2λ(x − y). We want to divide it by
2(x− y) and get λ = 1 , which may not be possible if x = y .
∗ The case of λ = 1 .

Then Eq1 implies 2x = 2x + µ, so µ = 0. Thus Eq3 means 2z = −2z,
so z = 0. Thus Eq4 beeomse x2 + y2 = 0, so x = y = 0. This does not
satisfy Eq5 , so we get no points in this case.
∗ The case of x = y .

Then Eq4 becomes 2x2 = z2, which means either z =
√
2x or z = −

√
2x .

· The case of z =
√
2x .

Then Eq5 becomes (2 −
√
2)x = −1, or x = − 1

2−
√
2
= −2+

√
2

2
=

−
√
2+1√
2

. Thus we get a point (−
√
2 + 1√
2

,−
√
2 + 1√
2

,−(
√
2 + 1)) .

· The case of z = −
√
2x .

Then Eq5 becomes (2 +
√
2)x = −1, or x = − 1

2+
√
2
= −2−

√
2

2
=

−
√
2−1√
2

. Thus we get a point (−
√
2− 1√
2

,−
√
2− 1√
2

,−(
√
2− 1)) .

The list of values on the candidate points:
• f(−

√
2+1√
2
,−
√
2+1√
2
,−(
√
2+1)) = (

√
2+1)2

2
+ (
√
2+1)2

2
+(
√
2+1)2 = 2(

√
2+1)2 = 6+4

√
2

• f(−
√
2−1√
2
,−
√
2−1√
2
,−(
√
2 − 1)) = (

√
2−1)2
2

+ (
√
2−1)2
2

+ (
√
2 − 1)2 = 2(

√
2 − 1)2 =

6− 4
√
2

Thus the global minimum value is 6− 4
√
2 and the global maximum does not exist.

(7) We see that the domain is not bounded ((1, 0, z) is in the domain for z ≥ 4, for example),
but f(x, y, z) is coercive (it is≥ x2+y2+z2). Thus we know automatically that the global
maximum does not exist.

We look for the following types of points:
• Critical points of the original domain.
• Lagrange critical points of the boundary piece #1.

{(x, y, z) | xz + yz = 4, x2 − y2 ≥ 0}
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• Lagrange critical points of the boundary piece #2.
{(x, y, z) | xz + yz ≥ 4, x2 − y2 = 0}

• Lagrange critical points of the boundary piece #3.
{(x, y, z) | xz + yz = 4, x2 − y2 = 0}

Let g(x, y, z) = xz + yz and h(x, y, z) = x2 − y2, so that the domain equations are
g(x, y, z) ≥ 4 and h(x, y, z) ≥ 0.
• Critical points of the original domain.

This means ∇f(x, y, z) = 〈0, 0, 0〉. As ∇f(x, y, z) = 〈4x + 2(x − y), 4y + 2(y −
x), 2z〉 = 〈6x−2y,−2x+6y, 2z〉, this being 〈0, 0, 0〉means 6x−2y = 0,−2x+6y = 0,
and 2z = 0. So, z = 0, y = 3x and x = 3y, so x = 9x, which means x = 0, so y = 0.
This does not satisfy g(x, y, z) ≥ 4, so we get no points from this case.
• Lagrange critical points of the boundary piece #1.

{(x, y, z) | xz + yz = 4, x2 − y2 ≥ 0}
Case A ∇g(x, y, z) = 〈0, 0, 0〉

As ∇g(x, y, z) = 〈z, z, x + y〉, this being zero means z = 0, which does not
satisfy xz + yz = 4, so we get no points from this case.

Case B ∇f(x, y, z) = λ∇g(x, y, z)
We get a system of equations

Eq1 6x− 2y = λz

Eq2 − 2x+ 6y = λz

Eq3 2z = λ(x+ y)

Eq4 xz + yz = 4

Eq5 x2 − y2 ≥ 0

By comparing Eq1 and Eq2 , we get 6x − 2y = −2x + 6y, or 8x = 8y, or
x = y. This gives

Eq1 4x = λz

Eq3 2z = 2λx ⇒ z = λx

Eq4 2xz = 4 ⇒ xz = 2

Taking Eq1 × Eq3 , we get 4xz = λ2xz. As xz = 2, λ2 = 4, so either λ = 2

or λ = −2. On the other hand, Eq3 plugged into Eq4 gives λx2 = 2, so this
implies that λ cannot be negative, so λ = 2, and x2 = 1. Thus either x = 1 or
x = −1. Thus we get two points, (1, 1, 2) , (−1,−1,−2) .

• Lagrange critical points of the boundary piece #2.
{(x, y, z) | xz + yz ≥ 4, x2 − y2 = 0}

Case A ∇h(x, y, z) = 〈0, 0, 0〉
As ∇h(x, y, z) = 〈2x,−2y, 0〉, this being zero means x = y = 0, which does
not satisfy xz + yz ≥ 4, so we get no points from this case.
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Case B ∇f(x, y, z) = λ∇h(x, y, z)
We get a system of equations

Eq1 6x− 2y = 2λx

Eq2 − 2x+ 6y = −2λy

Eq3 2z = 0

Eq4 xz + yz ≥ 4

Eq5 x2 − y2 = 0

As Eq3 implies z = 0, this violates Eq4 , giving no points in this case.
• Lagrange critical points of the boundary piece #3.

{(x, y, z) | xz + yz = 4, x2 − y2 = 0}
Case A1 ∇g(x, y, z) = 〈0, 0, 0〉

As ∇g(x, y, z) = 〈z, z, x + y〉, this being zero means z = 0, which does not
satisfy xz + yz = 4, so we get no points from this case.

Case A2 ∇h(x, y, z) = 〈0, 0, 0〉
As ∇h(x, y, z) = 〈2x,−2y, 0〉, this being zero means x = y = 0, which does
not satisfy xz + yz = 4, so we get no points from this case.

Case B ∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z)
We get a system of equations

Eq1 6x− 2y = λz + 2µx

Eq2 − 2x+ 6y = λz − 2µy

Eq3 2z = λ(x+ y)

Eq4 xz + yz = 4

Eq5 x2 − y2 = 0

From Eq5 , x2 = y2, so either x = y or x = −y. Since Eq4 means (x+ y)z =
4, this means x = −y is not possible. Thus x = y. Thus, the system becomes

Eq1 4x = λz + 2µx

Eq2 4x = λz − 2µx

Eq3 2z = 2λx

Eq4 2xz = 4

By comparing Eq1 and Eq2 , we get 2µx = 0. This means either µ = 0 or
x = 0. However, Eq4 means that xz = 2, which means x = 0 is impossible.
Thus, we have µ = 0. Thus the system becomes

Eq1 4x = λz

Eq3 2z = 2λx
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Eq4 2xz = 4

This is exactly the system appeared in the Case B of boundary piece #1, so there
are no new points.

The list of values on the candidate points:
• f(1, 1, 2) = 8
• f(−1,−1,−2) = 8

So the global minimum value is 8, and the global maximum does not exist.
�

Exercise 4. Find all the points on the plane x+ y+ z = 1 that are closest to the point (2, 0,−3)
and compute the distance.

Solution. We know that we just need to look for the smallest value of f(x, y, z) =
√

(x− 2)2 + y2 + (z + 3)2

on the Lagrange critical points. Since f(x, y, z) is coercive, we just do the usual Lagrange crit-
ical points of the original domain. Let g(x, y, z) = x + y + z so that the domain equation is
g(x, y, z) = 1.

Case A ∇g(x, y, z) = 〈0, 0, 0〉
As ∇g(x, y, z) = 〈1, 1, 1〉, it is never zero.

Case B ∇f(x, y, z) = λ∇g(x, y, z)
We get a system of equations

Eq1
x− 2√

(x− 2)2 + y2 + (z + 3)2
= λ

Eq2
y√

(x− 2)2 + y2 + (z + 3)2
= λ

Eq3
z + 3√

(x− 2)2 + y2 + (z + 3)2
= λ

Eq4 x+ y + z = 1

By comparing the numerators of the left sides of Eq1 , Eq2 , Eq3 , we get x− 2 = y =

z+3. This implies that y = x−2 and z = x−5. Then Eq4 becomes x+(x−2)+(x−5) =
1, so 3x − 7 = 1, so x = 8

3
, which implies that y = 2

3
and z = −7

3
. Thus we get a point

(
8

3
,
2

3
,−7

3
) .

We see that we only get one point, (8
3
, 2
3
,−7

3
), so this ought to be the closest point, and the

distance is f(8
3
, 2
3
,−7

3
) =

√
3 ·
(
2
3

)2
=
√

4
3
= 2√

3
. �

Exercise 5. Find all the points on the plane x− 2y+3z = 6 that are closest to the point (0, 1, 1)
and compute the distance.

Solution. We know that we just need to look for the smallest value of f(x, y, z) =
√
x2 + (y − 1)2 + (z − 1)2

on the Lagrange critical points. Since f(x, y, z) is coercive, we just do the usual Lagrange crit-
ical points of the original domain. Let g(x, y, z) = x − 2y + 3z so that the domain equation is
g(x, y, z) = 6.
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Case A ∇g(x, y, z) = 〈0, 0, 0〉
As ∇g(x, y, z) = 〈1,−2, 3〉, it is never zero.

Case B ∇f(x, y, z) = λ∇g(x, y, z)
We get a system of equations

Eq1
x√

x2 + (y − 1)2 + (z − 1)2
= λ

Eq2
y − 1√

x2 + (y − 1)2 + (z − 1)2
= −2λ

Eq3
z − 1√

x2 + (y − 1)2 + (z − 1)2
= 3λ

Eq4 x− 2y + 3z = 6

By comparing Eq1 , −1
2
× Eq2 and 1

3
Eq3 , we have

x√
x2 + (y − 1)2 + (z − 1)2

= − y − 1

2
√
x2 + (y − 1)2 + (z − 1)2

=
z − 1

3
√
x2 + (y − 1)2 + (z − 1)2

so
x = −y − 1

2
=
z − 1

3

Thus 2x = 1 − y, or y = 1 − 2x. Also, 3x = z − 1, so z = 3x + 1. Thus Eq4 becomes
x− 2(1− 2x) + 3(3x + 1) = 6, or x + 4x− 2 + 9x + 3 = 6, or 14x + 1 = 6, or x = 5

14
.

Thus y = 2
7
, and z = 29

14
. Thus, we get a point (

5

14
,
2

7
,
29

14
) .

We see that we only get one point, ( 5
14
, 2
7
, 29
14
), so this must be the closest point, and the distance

is

f(
5

14
,
2

7
,
29

14
) =

√(
5

14

)2

+

(
−5

7

)2

+

(
15

14

)2

=
5

14

√
1 + 4 + 9 =

5√
14

�

Exercise 6. Find all the points on the surface z = x2 + y2 that are closest to the point (5, 5, 0)
and compute the distance.

Solution. We know that we just need to look for the smallest value of f(x, y, z) =
√

(x− 5)2 + (y − 5)2 + z2

on the Lagrange critical points. Since f(x, y, z) is coercive, we just do the usual Lagrange crit-
ical points of the original domain. Let g(x, y, z) = x2 + y2 − z so that the domain equation is
g(x, y, z) = 0.

Case A ∇g(x, y, z) = 〈0, 0, 0〉
As ∇g(x, y, z) = 〈2x, 2y,−1〉, this is never zero, as the z component is never zero.

Case B ∇f(x, y, z) = λ∇g(x, y, z)
We get a system of equations

Eq1
x− 5√

(x− 5)2 + (y − 5)2 + z2
= 2λx

Eq2
y − 5√

(x− 5)2 + (y − 5)2 + z2
= 2λy

64



Eq3
z√

(x− 5)2 + (y − 5)2 + z2
= −λ

Eq4 z = x2 + y2

By plugging Eq3 into Eq1 , Eq2 , we get

Eq1
x− 5√

(x− 5)2 + (y − 5)2 + z2
= − 2xz√

(x− 5)2 + (y − 5)2 + z2

Eq2
y − 5√

(x− 5)2 + (y − 5)2 + z2
= − 2yz√

(x− 5)2 + (y − 5)2 + z2

so
x− 5 = −2xz, y − 5 = −2yz

From this, we see that x = 0 is impossible (the �rst equation would be −5 = 0), and
similarly y = 0 is impossible. Thus, we can divide the �rst equation by x and the second
equation by y and get

1− 5

x
=
x− 5

x
= −2z = y − 5

y
= 1− 5

y

Thus, 5
x
= 5

y
, so x = y. Thus Eq4 means z = 2x2, and we also have x − 5 = −2xz =

−4x3, which is 4x3 + x − 5 = 0. As x = 1 is an obvious solution, this factors into
(x− 1)(4x2 + 4x+ 5) = 0. Since 4x2 + 4x+ 5 has no real solution, we see that x = 1 is
the only solution to 4x3 + x− 5 = 0. Thus we get one point, (1, 1, 2) .

As we have only gotten one point (1, 1, 2), this must be the closest point, and the distance is
f(1, 1, 2) =

√
42 + 42 + 22 =

√
36 = 6. �

Exercise 7. Find all the points on the surface z = x2 + y2 that are closest to the point (1, 1, 0)
and compute the distance.

Solution. We know that we just need to look for the smallest value of f(x, y, z) =
√

(x− 1)2 + (y − 1)2 + z2

on the Lagrange critical points. Since f(x, y, z) is coercive, we just do the usual Lagrange crit-
ical points of the original domain. Let g(x, y, z) = x2 + y2 − z so that the domain equation is
g(x, y, z) = 0.

Case A ∇g(x, y, z) = 〈0, 0, 0〉
As ∇g(x, y, z) = 〈2x, 2y,−1〉, this is never zero, as the z component is never zero.

Case B ∇f(x, y, z) = λ∇g(x, y, z)
We get a system of equations

Eq1
x− 1√

(x− 1)2 + (y − 1)2 + z2
= 2λx

Eq2
y − 1√

(x− 1)2 + (y − 1)2 + z2
= 2λy

Eq3
z√

(x− 1)2 + (y − 1)2 + z2
= −λ

Eq4 z = x2 + y2

65



By plugging Eq3 into Eq1 , Eq2 , we get

Eq1
x− 1√

(x− 1)2 + (y − 1)2 + z2
= − 2xz√

(x− 1)2 + (y − 1)2 + z2

Eq2
y − 1√

(x− 1)2 + (y − 1)2 + z2
= − 2yz√

(x− 1)2 + (y − 1)2 + z2

so
x− 1 = −2xz, y − 1 = −2yz

From this, we see that x = 0 is impossible (the �rst equation would be −1 = 0), and
similarly y = 0 is impossible. Thus, we can divide the �rst equation by x and the second
equation by y and get

1− 1

x
=
x− 1

x
= −2z = y − 1

y
= 1− 1

y

Thus, 1
x
= 1

y
, so x = y. Thus Eq4 means z = 2x2, and we also have x − 1 = −2xz =

−4x3, or 4x3 + x− 1 = 0. Note that x = 1
2

is a solution, so it factors into 4x3 + x− 1 =
(2x − 1)(2x2 + x + 1). Since 2x2 + x + 1 has no real solution, the only solution of

4x3 + x− 1 = 0 is x = 1
2
. Thus we get a point (

1

2
,
1

2
,
1

2
) .

As we got only one point (1
2
, 1
2
, 1
2
), this must be the closest point, and the distance is f(1

2
, 1
2
, 1
2
) =√

3
4
=
√
3
2

. �

Exercise 8. Find all the points on the surface xy2z3 = 2 that are closest to the point (0, 0, 0) and
compute the distance.

Solution. We know that we just need to look for the smallest value of f(x, y, z) =
√
x2 + y2 + z2

on the Lagrange critical points. Since f(x, y, z) is coercive, we just do the usual Lagrange critical
points of the original domain. Let g(x, y, z) = xy2z3 so that the domain equation is g(x, y, z) = 2.

Case A ∇g(x, y, z) = 〈0, 0, 0〉
As ∇g(x, y, z) = 〈y2z3, 2xyz3, 3xy2z2〉, this being zero means y2z3 = 0, which means

xy2z3 = 0, which cannot be possible under xy2z3 = 2.
Case B ∇f(x, y, z) = λ∇g(x, y, z)

We get a system of equations

Eq1
x√

x2 + y2 + z2
= λy2z3

Eq2
y√

x2 + y2 + z2
= 2λxyz3

Eq3
z√

x2 + y2 + z2
= 3λxy2z2

Eq4 xy2z3 = 2

By comparing x× Eq1 , y
2
× Eq2 , z

3
× Eq3 , we get

x2√
x2 + y2 + z2

=
y2

2
√
x2 + y2 + z2

=
z2

3
√
x2 + y2 + z2
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or
x2 =

y2

2
=
z2

3

This means that y2 = 2x2, or y = ±
√
2x, and z2 = 3x2, or z = ±

√
3x. Then Eq4

becomes x · (2x2) · (±
√
3x)3 = 2, or ±3

√
3x6 = 1 (the sign of this is the same as the

sign of z = ±
√
3x). Thus z =

√
3x, and 3

√
3x6 = 1. Thus x6 = 1

33/2
, so x = ± 1

31/4
.

Thus we get four points, (
1

31/4
,

√
2

31/4
,

√
3

31/4
) , (

1

31/4
,−
√
2

31/4
,

√
3

31/4
) , (− 1

31/4
,

√
2

31/4
,−
√
3

31/4
) ,

(− 1

31/4
,−
√
2

31/4
,−
√
3

31/4
) .

The list of values on the candidate points:
• f( 1

31/4
,
√
2

31/4
,
√
3

31/4
) =
√
3−1/2 + 2 · 3−1/2 + 3 · 3−1/2 =

√
6 · 3−1/2 =

√
2
√
3

• f( 1
31/4

,−
√
2

31/4
,
√
3

31/4
) =
√
3−1/2 + 2 · 3−1/2 + 3 · 3−1/2 =

√
6 · 3−1/2 =

√
2
√
3

• f(− 1
31/4

,
√
2

31/4
,−

√
3

31/4
) =
√
3−1/2 + 2 · 3−1/2 + 3 · 3−1/2 =

√
6 · 3−1/2 =

√
2
√
3

• f(− 1
31/4

,−
√
2

31/4
,−

√
3

31/4
) =
√
3−1/2 + 2 · 3−1/2 + 3 · 3−1/2 =

√
6 · 3−1/2 =

√
2
√
3

Thus, there are four closest points, ( 1
31/4

,
√
2

31/4
,
√
3

31/4
), ( 1

31/4
,−

√
2

31/4
,
√
3

31/4
), (− 1

31/4
,
√
2

31/4
,−

√
3

31/4
), (− 1

31/4
,−

√
2

31/4
,−

√
3

31/4
),

and the distance is
√

2
√
3. �
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